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closed-loop system is ESPR. Now using Matlab LMI Control Toolbox [9] T. Hinamoto, “2-D Lyapunov equation and filter design based on the
and solving the LMI (32), we obtain Fornasini-Marchesini second modelEFEE Trans. Circuits Syst, vol.

40, pp. 102-110, Jan. 1993.

[ 4.6705 3.6760 —2.93127 [10] , “Stability of 2-D discrete systems described by the Fornasini-
X =1 3.6760 71592 —3.9770 gﬂsﬁfggim&ﬂicggg?modelIEEE Trans. Circuits Syst, hol. 44, pp.
[—2.9312 =3.9770  5.6329 | [11] T. Kaczo’rek, 'i'wo-Di.mensionaI Linear SystemsBerlin, Germany:
[ 1.6713 —0.0105 —0.88907 Springer-Verlag, 1985.
Y = | —0.0105 0.4083 0.1350 [12] 3._ E ITurek, “Tt}e general state-space modelfloratwo—dimensional linear
| Z0.8800  0.1350 0.8602 | 1|§?BHS. system,1IEEE Trans. Automat. Contwol. AC-30, pp. 600-602,
[ 1.0065 0.0081 —0.11927 [13] X.Liand C. E. De Souza, “Criteria for robust stability and stabilization
w =1 0.0081 0.0558 —0.1015 ti)ggggigglzn Iligze;r systems with state-delafyitomatica vol. 33, pp.
L =0.1192 —0.1015  0.8039 | [14] M. S. Mahnlﬁoud, Y C. Soh, and L. Xie, “Observer-based positive real
7= 0.5721  1.4912 —1.9891] ¢ — 3.4374. igggol of uncertain linear systemsAutomaticavol. 35, pp. 749-754,
| —0.1030 0.9699 —1.9244 :

[15] M. S. Mahmoud and L. Xie, “Positive real analysis and synthesis of

Therefore, from Theorem 3, there exists a solution to the positive real ~ uncertain discrete time system$ZEE Trans. Circuits Syst, vol. 47,

control problem. Furthermore, a desired state feedback controller ca[r116]

pp. 403-406, Apr. 2000.
R. P. Roesser, “A discrete state-space model for linear image pro-

be chosen as cessing,"[EEE Trans. Automat. Contvol. 20, pp. 1-10, 1975.
—0.1940 0.0916 —0.3894 [17] W. Sun, P. P. Khargonekar, and D. Shim, “Solution to the positive real
u(i,j) = 0.3765  0.0407 0 ’()Zr] x(4, 7). control problem for linear time-invariant systemsEEE Trans. Au-
—U.0rbo UUsd 0 —0.0U20 tomat. Control vol. 39, pp. 2034—2046, Nov. 1994.

[18] M. Vidyasagar,Nonlinear Systems AnalysisEnglewood Cliffs, NJ:
Prentice-Hall, 1993.
V. CONCLUSIONS [19] J. T. Wen, “Time domain and frequency domain conditions for strict
positive realnessJEEE Trans. Automat. Contrplol. 33, pp. 988-992,

This brief has addressed the problem of positive real control for un-  Oct. 1988. ) _ o
certain 2-D discrete systems described by the FMLSS model. A ve?0] L. Xie and C. E. D. Souza, “Robusi.. control for linear time-in-

variant systems with norm-bounded uncertainty in the input matrix,”

sio_n of positive realness for 2-D discrete_systems ha_ls been established, Syst. Contr. Letf.vol. 14, pp. 389-396, 1990.

which has been shown to be an extension of positive realness of 1-P1] L. Xie, M. Fu, and C. E. De SouzaH.. control and quadratic stabiliza-
discrete systems. A condition of the solvability of the above problem tion of systems with parameter uncertainty via output feedbdEBEE
has been presented in terms of an LMI and the explicit formula of a___ Trans. Automat. Contrvol. 37, pp. 12531256, Aug. 1992.

desired state feedback controller has been given. The proposed conthf!

L. Xie and Y. C. Soh, “Positive real control for uncertain linear time-
invariant systems,Systems Control Lettvol. 24, pp. 265-271, 1995.

law guarantees both robust stability and extended positive realness of
the closed-loop system with admissible parameter uncertainties.
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I. INTRODUCTION When a cyclostationary noise signal passes through a LTl filter and

L . . the time-average PSD is measured at the output, the same result is ob-
The concepts of noise figure and noise temperature have been infro-
i

- ) T . ned if only the time-average PSD is considered at the input of the
duced to describe the noise performance of circuits and receivers . : . .
: ; .~ filter [4]. However, when a cyclostationary noise signal is fed to a
[2]. They are convenient performance metrics because the noise figure . . ; )
ime-varying system, consideration of only the time-average PSD of

and noise temperature of a system of cascaded blocks can be found. . .
. . . L e’input noise can lead in the general case to wrong results [4]. For
easily from the corresponding quantities of the individual blocks. How- . . . : . ;
. stance, if the time-varying gain and the power of the input noise ob-
ever, the simple formulas for a system of cascaded blocks assume [ha - ; L .
. . . . In their peak values simultaneously, considering only the time-av-
the noise at the input and the output of every block is a wide-sense-s

8

tionary (WSS) process. The mixer is a very common block in modefi 3¢ |npu_t noise wﬂl_undere_sﬂmgte the output noise. The following
e>TampIe will help clarify the situation.

recelvers and is used to shiftthe frequency of an information SIgNal ey gy a WSS signl) with PSDS, (/)i fed o amierd,
y plying 1t by a sig 4 Y, Y SUPZhd the output of thia, (¢) is fed to a mixerB, as shown in Fig. 1(a).

plied by a local oscillator (LO). There are two reasons why the mixq.rhe random signak(t) can represent noise present at the input of
output noise is in fact not WSS but has periodically time-varying statis-.

tics. First, the operating points of the devices may vary with time, ar?alxer 4, or noise generated by its devicesthe mixing operation

second the transfer function of the noise signal from the point at whiﬁqudeled by multiplication of the input signal) with a periodic

it is generated to the output can have time-varying characteristics .V(jfeor:?}t'm;\éir{;)n gvﬁﬁl?r)egir;enr:t?d b?fo? I;(i:f;;sg”;arfg)ng.
The mixer output noise is a cyclostationary process and its completeq =NCYJoa . q/ SNCYJob, . ) ’
ectively?2 The output of mixer4 is a cyclostationary process whose

description requires a periodically time-varying power-spectral densﬁi} . ) o - :
) ) . Ime-average PSD consists of copiesSg shifted in frequency in-
(PSD)S(/, #) [4]. An accurate evaluation of the output noise when C.yté er multigle off,a, and weighteg by di?f];)rent coefﬁcienols. It i;/easy

clostationary noise is processed by a linear periodically time-varyin S . .
Y b y P y yt see that frequency components:Qf¢) in distance integer multiple

(LPTV) system is considerably more complicated than the evaluat|8¥1 £.0 are correlated, since they contain the same frequency compo-

of the output noise of a linear-time-invariant (LTI) system processin : .
WSS noise. The corresponding analysis and methodology is given'%%nt ofn(t). A random process can be cyclostationary with cycle fre-

[4], and a related circuit simulator has been presented in [5]. quencyf.. only if there exists correlation between two different fre-

Despite the fact that the mixer output noise is cyclostationary, ey components in distangg,. The spectral correlation can be

oo . . . xpressed in terms of the cyclic spectra, the Fourier components of
noise figure calculated using the time-average output noise PSD [as.. . . . "

. . . . € time-varying PSD, and in fact tfi¢h cyclic spectrum for positive
been traditionally used to characterize mixers, and the simple formulas

for the noise figure of a system of cascaded blocks have been use és the correlation between frequency components in distaice,

) o . - (l)le theOth order cyclic spectrumis the time-average PSD. A random
find the noise figure of a receiver. We shall show here that this treat- : .

. . L . rocess can be WSS only if any two different frequency components

ment provides the correct noise characterization of a communication gy :

. . . . . —_are uncorrelated [4]. The output of mixBris a cyclostationary process

system in most practical cases, but we will examine cases in which | :
X i . . with two cycle frequencieg.. and f.;. If f.. andf,, are commen-
could lead to an inaccurate prediction. The pitfalls of applying the sta- : L . :
u%ate (their ratio is a rational numbet),(¢) can be viewed as cyclo-

tionary process theory to cyclostationary signals have been presenté . )
in mathematical terms in [6]. Here, we discuss qualitatively, some rSF-a. lonary with one cycle frequency equal to the maximum common
lated results that can be useful in the design of radio-frequency ( ‘f'der frequency off.. and f,p.
communication systems. _
A. Effect of LO Frequency Relation

Let us examine now the spectral content of the output of mixer
Bny(t) at a frequencyf..:. Frequency components of,(¢) at

The complete description of a cyclostationary noise signal with itfequenciesf... + kf.5, k being an integer, are folded ofy.. as
time-varying PSD¥(f, t), as opposed to its description wifli f ), the  shown in Fig. 1(b). Ifvf.. = mf.» for some integers andm, there
time-average of(f. ¢), is significant only when the block to which the exists correlation among these components, and it is incorrect to add
cyclostationary noise is input is synchronized to the variatid(gt #)  their power, as we would do if. (#) were WSS, since a valid addition
with time. This statement will be explained on an intuitive basis, and\”omd require correlation terms. However, if the ratio pf, and
also gains support from the following theorem [7]. fos is Not a rational number, such integersandm do not exist and

If a uniformly distributed random variable from zero to one cyclgimply adding the different frequency components of the time-average
period is added to the time variabief a cyclostationary process with psp s,,,(f) provides the correct result, since the added terms are
PSDS(f, t), (that is, the information about the phase of the perioqincorrelated.
ically varying PSD is lost) the resulting process is stationary and its|n practice, the ratio of two LO frequencies generated by different
statistics are the time-average of the statistics of the cyclostation@e running oscillators can always be considered an irrational number,
process. since because of the random phase error they cannot track each other.

If the system to which the cyclostationary noise is input does not
track the PSD variation with time, the phaseSgif, ¢) for this system 1inthe case of noise generated by devices with a time-varying operating point,
is unknown. In the absence of information about the phas#( ¢f t)  this noise is cyclostationary and white, and its time variation can be incorporated

the process becomes stationary, with PSD equal to the time-averag% e system [3]. Therefore, in any case, the input na(s¢ can be considered
' . For every noise source inside the mixer, the time-varying gain is a different

S(f, 1). . _ function.

Usually, the noise performance of the analog part of a communicazy high frequencies where reactive effects are not negligible, the mixing op-
tion system consisting of a chain of RF circuit blocks, is characterizeghtion also depends on the input-signal frequency and is better modeled with
by measuring the time-average noise PSD at the output of the chaieriodically-time-varying transfer functio(f, t) [8], [3], instead of a pe-

Noise measuring equipment measures the noise PSD at a freqﬂenggdically-time-varying gaim(t). Frequency translation is described with the

. . . ) rier components aofi(f, ¢), the conversion transfer functions instead of
by measuring the noise signal power at the output of a very narrow ba(ﬂglconversion gains. For simplicity, reactive effects are neglected in our mixer

filter aroundf, without tracking the time variation of the noise statiSmodel. However, the qualitative arguments presented here also apply at high
tics and provides the time-average PSD. frequencies.

Il. CYCLOSTATIONARY NOISE AND ITS TIME AVERAGE
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the cyclostationary noise, (t)—the integral of the time-varying PSD
over all frequencies—at the first mixer output is the periodic function
of time shown in Fig. 2(b). Iffoe = for, OF fou = m for, We always
samplen.(t) wheno.(t) is at the same point of the period as shown
in Fig. 2(b), and if instead the time-averagesof(t) is considered at
the input of the sampler, we probably significantly overestimate or un-
derestimate the output noise. In this case, sifi¢gis not a smooth

function of time and its spectral content does not die out at high fre-
guencies, the effect of spectral correlation is not diminished ifs
> large. If fou / fo» = m/n is a rational number and is a small integer,
f we sample, repeatedly, only a few points in the period and it is pos-
sible that considering the time-averagesqf(¢) at the sampler input
will result again in an erroneous noise estimation. However, i a
, : large number, the same points of the period are repeatedly sampled, but
| Py they are many and uniformly distributed across a period, as shown in

A
Su®f o

I~ Toam i loa|

correlated

fob | fon | Tob Fig. 2(c), so considering the time-average at the sampler input would
Sub(f) 4 / give a practically correct result. Whe®n. / f,» is not a rational number,
after long enough time the whole period is uniformly sampled and in
[T~ > fact the same point is never sampled twice. In this case, time-averaging
fut f at the sampler input provides exactly the correct result.
(b) Let us now examine the effect of the LO frequency relation in a more

Fig. 1. (a) A cascade of two mixers. (b) Time-average PSD of noise at tﬁgantltatlve manner. Refe.rrlng.to Fig. 1, W.e can seerthgt) consists
input, after the first mixer and the output. of scaled copies of(¢) shifted in frequencies. fo. + ki fos, Where

kq andk; are the sidebands at which the conversion gain of mixers
and B, respectively, is significant, determined by the spectral content
The situation is different however if the two LOs are locked to af the waveforms:(¢) andb(¢) and possibly as we shall see below by
common reference frequency. In a superheterodyne receiver whiittering the mixer outputs. If two of these frequencies coincide, the
employs two mixers, it is a common practice to generate the tvepectral correlation affects the output noise estimatiok{, kndk;, is
LO signals from two PLLs with a common reference frequency second set of mixer sidebands, the relation
which means thaf../ fs is a rational numbenm /n (we will assume

. . 1 p L

below thatm andn are such that a common integer divider greater Fafoa + b fob = ko foa + Fp fob (1)
than one does not exist). Despite this, a rational frequency raflb

foa/ for = m/n with m or n very large numbers is expected to have ky — Ky, foa

the same practical effect as an irrational frequency ratio. In fact, the Fu — K. fop @)

LO frequencies in a receiver chain are often chosen such that they do ) ) ]
not have a simple relation in order to avoid spurious responses. ~ can only hold if fo./ f,; is a rational number, as we also concluded

Assuming a smootf(¢) with low frequency content, we can Seebefore. Furthermore, ifoa /for = m/n, spectral correlation has an

that the conversion gain of mixét drops rapidly with the order of the e_ffect only if Fhe“? are integers, , k‘/l.’ ko, a_ndk,g that represent mixer
sideband, and only the first few (for example up to 3 or 4) contribul'séde}aands with significant conversion gain such that
significantly. Therefore, considering again the integerandn that by —ky _m 3)
satisfy fo./foo = m/n, if m is a large integer, in every set of cor- ko =k, n’

related frequency components:af(t) in distance integer multiple of If for example,a(t) andb(t) are sinusoidal with frequenciesf, and
mfos = nfoq that contribute tof,.., only one term contributes sig- nf., where f, is some reference frequendy,, k., k;, andk; can
nificantly and only a minor error is introduced by adding the power afnly be+1 and—1, and spectral correlation can have an effect only if
all the components. I is large, assuming a smootlit), the effect n = m.

of noise correlation is also attenuated for a similar reason: the copySimilarly, one can examine the effect of spectral correlation when a
of n(t) aroundr £, has low power. Concluding, the effect of spectrathird mixer C' follows the chain of4 and B. Denoting the frequency
correlation is insignificant if.() is smooth ana is large, or ifb(t) is  of C by f.. and the sidebands @f with some significant conversion
smooth andn is large, or both. Very often in practice, especially at higigain byk. andk.., spectral correlation affects the noise estimation only
frequencies: () andb(t) are smooth functions, and unless the ratio aivhen there are mixer sidebands with significant conversion gain, such
the two LO frequencies is a simple rational numbefn with m, n  that
small integers, calculating the time-average at the first mixer output
and treating it as if it were the PSD of WSS noise, does not introduce
a significant error in the noise estimation at the second mixer OUtth.the LO frequencies are related, i.g., = m fo, foy = nfo, for =

Nevertheless, there are practical situations where the time-varying ga’;p . :

. . . . -, Wheref, is some reference frequency and n, andp integers
of a mixer is not a smooth waveform. An example is the sampling Lold

. . . ) . . L with no common factors, (4) becomes

subsampling mixer, in which case the time-varying gain is a pulse train

which has high frequency content. (ko — kp)m + (ky — ky)n + (ke — ki)p = 0. (5)

The above argument can be easily visualized in the time domainthis case, it is possible that conditions (4) and (5) hold for low-order
with the example of Fig. 2. Assume thiit) is an impulse train, so sidebands, evenifthe LO frequency relation is not simple. For example,
that mixerB is essentially a sampling mixer as shown in Fig. 2(a) anifl f,. = 2000 MHz, f., = 660 MHz and f,. = 10 MHz the above
that we desire to estimate the time-average power of the samples ataheations are satisfied fér, — &, = 1, k, — k, = —3, andk. — k. =
output of the sampler. Consider that the time-varying powgr) of —2.

]\'afoa‘ + kbfob + ]\'cfoc = k;,foa + kl/)fob + kfffoc- (4)
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Fig. 2. Sampling cyclostationary noise.
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Fig. 3. Filtering cyclostationary noise.
B. Filtering a Cyclostationary Noise Process and therefore only the stationary and the second-order cyclic spectra
If filtering takes place at the output of a mixer, as in Fig. 3(a), it igan exist.

possible that the noise at the output of the filter is stationary, and noMany other similar results can be visualized in a similar manner.
cyclostationary noise considerations need to be made, or that the ci&f- €xample if the filter is a low-pass filter with a cut off frequency
acteristics of the cyclostationary noise change. Some relevant theorécmsthe resulting process can conf[aln_only the stationary and first-order
have been presented in [5], where they were derived in a mathematf4jIC SPectrum. A possible application of such a result as well as of
way. Similar results can be found elsewhere [3], [9]. These theoreﬁ‘?§‘U|t 3 above is the following. If it is known that the random signal at

become intuitive by examining filtering of a set of correlated frequené{)e output of mixerd in Fig. 1 does not contain theth order cyclic

. L |
components. Let us consider a cyclostationary noise process with cyi§CTUMAa — kq in (2)~(5) cannot be equal to.

frequencyf., and a set of correlated frequency components in distance'n @ receiver chain the first mixer is typically followed by a bandpass

integer multiple off,.. The results of [5] can be observed as follows. IF filter. In this case one can apply the following theorem, which can

1) Consider a low-pass filter with cut-off frequengy/2 or lower, IS0 be verified easily by inspection.

as in Fig. 3(b). One can see that only one component of the set of correll_cyclostationary noise with cycle frequendf, passes through

lated components can fall in the winddw f, /2, f,/2] that the filter a bandpass filter with bandwidtfi./2 or less, and the frequencies

allows to pass. Therefore any frequency components at the outpuf'6f-/2) Wherek is an integer do not fall into the passband, the output

the filter are uncorrelated and the output noise is stationary. noise Is stationary. . )

2) Consider a single-sided bandpass filter, either upper band or Iowe;rhe latter hgs been us_ed in [3] but here we clearly define the nec-
band with respect tg,, and bandwidthf, /2 or less, as in Fig. 3(c). essary p_rop_e_rtles of the filter passband. Results 1 and 2 above can be
After filtering, only one frequency component of the correlated set rgfen as individual cases of this last theorem.
mains, and the resulting noise is stationary.

3) Consider a bandpass filter with center frequeficgnd bandwidt
fo orless, as in Fig. 3(d). One can easily see that after filtering, the redn the previous section the passband characteristics of a filter fol-
maining correlated frequency components can only be in distafice lowing a mixer were related to the frequency of the LO waveform

h C. Mixing a Band-Limited Cyclostationary Noise Process
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Fig. 4. Mixing band-limited cyclostationary noise.

driving the mixer in order for the output noise signal to have certaitiction. This situation could arise for example when an in-band blocker
properties. Here, we will examine the case of Fig. 4(a) in which a geis-processed together with the weak desirable signal by the LNA and
eral cyclostationary signal for which we have no information about thhe RF mixer of a receiver.
location of the correlated frequency components, passes through a filtelcet us now consider noise introduced to a mixer from the LO port.
and the filter output is fed to a mixer (or more generally a time-varyinghe LO is a periodically time-varying circuit and it is possible that the
circuit). We will relate the filter characteristics with the frequeny noise at its output contains some cyclostationary component. The time-
of the LO signal driving the mixer, in order for the time-average noisearying processing of this signal by the mixer tracks exactly the time
at the mixer output to be unaffected by the spectral correlation. variation of the noise statistics since the mixer instantaneous operating
If the filter is low-pass with cut-off frequencf, /2 or lower as shown point is determined by the LO drive. Therefore, it is not correct to time-
in Fig. 4(b), no overlap will take place during mixing, and the averageverage the noise PSD at the LO output and use it as if it were a WSS
noise at the output will not be affected by spectral correlation. Thigocess.
situation appears often at the back-end of a receiver where sampling
(for example performed by a switched capacitor filter or an analog to

L ) T IV. CONCLUSION
digital converter) is proceeded by an anti-alias filter.

If the filter is bandpass with center frequentyand bandwidtho, We qualitatively examined the significance of the cyclostationary na-
as in Fig. 4(c), one can see that overlap will not happen if ture of the noise generated in a communication system. We saw that cy-
, ] clostationarity is equivalent to the presence of correlated components in
(k= k) fo 4 2fo] > w ®)  the frequency spectrum. From the above discussion it results that in the

for all mixer sidebands and’ with some significant conversion gain, M&jority of the practical cases, use of the concept of noise figure and
This results from the observation that the positive passband will 6@nsidering only the time-average component of the cyclostationary
transferred to frequency bands with ceritgr, + f. and widthw, the noise at the input and the output of every block does not introduce sig-
negative passband will be transferred to frequency bands with cerfifficant inaccuracy in the noise characterization of the overall system

k'f. — f. and widthw, and to avoid overlap the centers of the twdor two reasons. First, the local oscillator frequencies used usually do
frequenc/y bands must be in distance greater than not have a simple relation and the situation resembles the case at which

the two frequencies are noncommensurate. Second, usually filtering
takes place in several places in the receiver chain which converts the cy-
clostationary noise to stationary noise. However, we examined practical

A practical situation that deserves attention is when an interferimgses where cyclostationarity cannot be ignored, namely when the sub-
signal or blocker is present at the input of a receiver. If this signal s2quent stage is time-varying synchronously with the cyclostationarity,
strong it can change the operating point of the devices and affect the ais-for example when the subsequent stage is driven nonlinearly by the
cuit noise performance. The noise generated by the circuit will acqustage generating cyclostationary noise. In these situations, if noise char-
cyclostationary characteristics with cycle equal to the blocker perioaterization is desirable by means of a circuit simulator which provides
and if the blocker is not filtered or modulated to a different frequencthe time-average output noise the time-varying circuit blocks must be
it acts as a common LO for successive cascaded blocks. In this casesiatulated together. Alternatively, the simulator of [5] can be used to
though a block can still be characterized with the noise figure under tb@culate the cyclic spectra of every block separately and create ap-
presence of a blocker, use of the formulas for cascaded blocks to gstépriate macro-models which can then be used in a behavioral level
mate the noise figure of the whole receiver can lead to an inaccurate mieiulation.

IIl. Two CASESWHERE SPECTRAL CORRELATION IS SIGNIFICANT
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Model With Bounded Wire Sizes formula can be iteratively applied to optimally size the wire segments
in a routing tree.
Yu-Min Lee, Charlie Chung-Ping Chen, and D. F. Wong The remainder of this brief is organized as follows. In Section I,

we show how to compute the Elmore delay for nonuniformly sized

wire segments. In Section IlI-A, we derive the optimal wire-sizing

Abstract—in this brief, we develop the optimal wire-sizing functions function when the wire widths are not constrained by any bounds. In
under the Elmore delay model with b_ounded wire_sizes. Giyt_an a wire seg- Section I1I-B, we consider the case where lower and upper bounds for
ment of length L, let f () be the width of the wire at position@, 0 < 0 \yire widths are given. We discuss the importance of our wire-sizing

x < L. We show that the optimal wire-sizing function that minimizes R - - . . . .
the Elmore delay through the wire is f(z) = ae~%, wherea > 0 formula in sizing the wire segments in a routing tree in Section IV. Fi-

and b > 0 are constants that can be computed irO(1) time. In the case nally, we present some experimental results and concluding remarks in

where lower bound (L > 0) and upper bound (U > 0) of the wire  Section V.

widths are given, we show that the optimal wire-sizing functionf (=) is a

truncated version of ae~*" that can also be determined inO(1) time. Our

wire-si;ing form_ula can be iteratively applied to optimally size the wire seg-

ments in a routing tree. We use the EImore delay model [7]. Supp®¥eis partitioned into

Index Terms—EImore delay, optimal, wire sizing. n equal-length wire segments, each of length = L/n. Letx; be

iAz,1 < i < n. The capacitance and resistance of a wire segment
i can be approximated by Az f (x;) andro Ax/ f(x;), respectively.

Il. ELMORE DELAY MODEL

|. INTRODUCTION Thus, the EImore delay throudl™ can be approximated by
As very large-scale integration (VLSI) technology continues to scale n
down, interconnect delay has become the dominant factor in deep sbl-= Ra | C1, + Z cof(xi)Ax
micron designs. As a result, wire sizing plays an important role in i=1

achieving desirable circuit performance. Recently, many wire-sizing LN

algorithms have been reported in the literature [1]-[5]. All these algo- +> P > cof(z)de+Cr ). (1)
rithms size each wire segment uniformly, i.e., identical width at every i=1 J=i

position on the wire. In order to achieve nonuniform wire sizing, ex- The first term is the delay of the driver, which is given by the driver
isting algorithms have to chop wire segments into large number of smadkistance, multiplied by the total capacitance & andC'r.. The
segments. Consequently, the number of variables in the optimizati@stond term is the sum of the delay in each wire segremtich is
problem is increased substantially and thus results in long runtime agiglen by its own resistanog Az/ f(x;) multiplied by its downstream

large storage. capacitancg _; co f(z;) Az +Cr. (See Fig. 2) Az — oo, Dy, —
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