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closed-loop system is ESPR. Now using Matlab LMI Control Toolbox
and solving the LMI (32), we obtain

X =

4:6705 3:6760 �2:9312

3:6760 7:1592 �3:9770

�2:9312 �3:9770 5:6329

Y =

1:6713 �0:0105 �0:8890

�0:0105 0:4083 0:1350

�0:8890 0:1350 0:8602

W =

1:0065 0:0081 �0:1192

0:0081 0:0558 �0:1015

�0:1192 �0:1015 0:8039

Z =
0:5721 1:4912 �1:9891

�0:1030 0:9699 �1:9244
� = 3:4374:

Therefore, from Theorem 3, there exists a solution to the positive real
control problem. Furthermore, a desired state feedback controller can
be chosen as

u(i; j) =
�0:1940 0:0916 �0:3894

�0:3765 0:0497 �0:5025
x(i; j):

V. CONCLUSIONS

This brief has addressed the problem of positive real control for un-
certain 2-D discrete systems described by the FMLSS model. A ver-
sion of positive realness for 2-D discrete systems has been established,
which has been shown to be an extension of positive realness of 1-D
discrete systems. A condition of the solvability of the above problem
has been presented in terms of an LMI and the explicit formula of a
desired state feedback controller has been given. The proposed control
law guarantees both robust stability and extended positive realness of
the closed-loop system with admissible parameter uncertainties.
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Cyclostationary Noise in Radio-Frequency
Communication Systems

Manolis T. Terrovitis, Kenneth S. Kundert, and Robert G. Meyer

Abstract—Because of the periodically time-varying nature of some cir-
cuit blocks of a communication system, such as the mixers, the noise which
is generated and processed by the system has periodically time-varying sta-
tistics. An accurate evaluation of the system output noise is not straightfor-
ward as in the case where all the circuit blocks are linear-time-invariant
and the noise that they generate is time-independent. We qualitatively ex-
amine here, conditions under which we can treat the noise at the output
of every circuit block of a practical communication system as if it were
time-invariant, in order to simplify the noise analysis without introducing
significant inaccuracy in the noise characterization of the overall commu-
nication system.
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I. INTRODUCTION

The concepts of noise figure and noise temperature have been intro-
duced to describe the noise performance of circuits and receivers [1],
[2]. They are convenient performance metrics because the noise figure
and noise temperature of a system of cascaded blocks can be found
easily from the corresponding quantities of the individual blocks. How-
ever, the simple formulas for a system of cascaded blocks assume that
the noise at the input and the output of every block is a wide-sense-sta-
tionary (WSS) process. The mixer is a very common block in modern
receivers and is used to shift the frequency of an information signal
by multiplying it by a signal at a different frequency, commonly sup-
plied by a local oscillator (LO). There are two reasons why the mixer
output noise is in fact not WSS but has periodically time-varying statis-
tics. First, the operating points of the devices may vary with time, and
second the transfer function of the noise signal from the point at which
it is generated to the output can have time-varying characteristics [3].
The mixer output noise is a cyclostationary process and its complete
description requires a periodically time-varying power-spectral density
(PSD)S(f; t) [4]. An accurate evaluation of the output noise when cy-
clostationary noise is processed by a linear periodically time-varying
(LPTV) system is considerably more complicated than the evaluation
of the output noise of a linear-time-invariant (LTI) system processing
WSS noise. The corresponding analysis and methodology is given in
[4], and a related circuit simulator has been presented in [5].

Despite the fact that the mixer output noise is cyclostationary, the
noise figure calculated using the time-average output noise PSD has
been traditionally used to characterize mixers, and the simple formulas
for the noise figure of a system of cascaded blocks have been used to
find the noise figure of a receiver. We shall show here that this treat-
ment provides the correct noise characterization of a communication
system in most practical cases, but we will examine cases in which it
could lead to an inaccurate prediction. The pitfalls of applying the sta-
tionary process theory to cyclostationary signals have been presented
in mathematical terms in [6]. Here, we discuss qualitatively, some re-
lated results that can be useful in the design of radio-frequency (RF)
communication systems.

II. CYCLOSTATIONARY NOISE AND ITS TIME AVERAGE

The complete description of a cyclostationary noise signal with its
time-varying PSDS(f; t), as opposed to its description withS(f), the
time-average ofS(f; t), is significant only when the block to which the
cyclostationary noise is input is synchronized to the variation ofS(f; t)
with time. This statement will be explained on an intuitive basis, and it
also gains support from the following theorem [7].

If a uniformly distributed random variable from zero to one cycle
period is added to the time variablet of a cyclostationary process with
PSDS(f; t), (that is, the information about the phase of the period-
ically varying PSD is lost) the resulting process is stationary and its
statistics are the time-average of the statistics of the cyclostationary
process.

If the system to which the cyclostationary noise is input does not
track the PSD variation with time, the phase ofS(f; t) for this system
is unknown. In the absence of information about the phase ofS(f; t)
the process becomes stationary, with PSD equal to the time-average of
S(f; t).

Usually, the noise performance of the analog part of a communica-
tion system consisting of a chain of RF circuit blocks, is characterized
by measuring the time-average noise PSD at the output of the chain.
Noise measuring equipment measures the noise PSD at a frequencyf

by measuring the noise signal power at the output of a very narrow-band
filter aroundf , without tracking the time variation of the noise statis-
tics and provides the time-average PSD.

When a cyclostationary noise signal passes through a LTI filter and
the time-average PSD is measured at the output, the same result is ob-
tained if only the time-average PSD is considered at the input of the
filter [4]. However, when a cyclostationary noise signal is fed to a
time-varying system, consideration of only the time-average PSD of
the input noise can lead in the general case to wrong results [4]. For
instance, if the time-varying gain and the power of the input noise ob-
tain their peak values simultaneously, considering only the time-av-
erage input noise will underestimate the output noise. The following
example will help clarify the situation.

Consider that a WSS signaln(t)with PSDSn(f) is fed to a mixerA,
and the output of thisna(t) is fed to a mixerB, as shown in Fig. 1(a).
The random signaln(t) can represent noise present at the input of
mixer A, or noise generated by its devices.1 The mixing operation
is modeled by multiplication of the input signaln(t) with a periodic
waveform (time-varying gain) generated by a local oscillator,a(t)with
frequencyfoa andb(t) with frequencyfob, for mixersA andB, re-
spectively.2 The output of mixerA is a cyclostationary process whose
time-average PSD consists of copies ofSn(f) shifted in frequency in-
teger multiple offoa, and weighted by different coefficients. It is easy
to see that frequency components ofna(t) in distance integer multiple
of foa are correlated, since they contain the same frequency compo-
nent ofn(t). A random process can be cyclostationary with cycle fre-
quencyfoa only if there exists correlation between two different fre-
quency components in distancefoa. The spectral correlation can be
expressed in terms of the cyclic spectra, the Fourier components of
the time-varying PSD, and in fact thekth cyclic spectrum for positive
k is the correlation between frequency components in distancekfoa,
while the0th order cyclic spectrum is the time-average PSD. A random
process can be WSS only if any two different frequency components
are uncorrelated [4]. The output of mixerB is a cyclostationary process
with two cycle frequenciesfoa andfob. If foa andfob are commen-
surate (their ratio is a rational number),nb(t) can be viewed as cyclo-
stationary with one cycle frequency equal to the maximum common
divider frequency offoa andfob.

A. Effect of LO Frequency Relation

Let us examine now the spectral content of the output of mixer
B nb(t) at a frequencyfout. Frequency components ofna(t) at
frequenciesfout + kfob, k being an integer, are folded onfout as
shown in Fig. 1(b). Ifnfoa = mfob for some integersn andm, there
exists correlation among these components, and it is incorrect to add
their power, as we would do ifna(t) were WSS, since a valid addition
would require correlation terms. However, if the ratio offoa and
fob is not a rational number, such integersn andm do not exist and
simply adding the different frequency components of the time-average
PSDSna(f) provides the correct result, since the added terms are
uncorrelated.

In practice, the ratio of two LO frequencies generated by different
free running oscillators can always be considered an irrational number,
since because of the random phase error they cannot track each other.

1In the case of noise generated by devices with a time-varying operating point,
this noise is cyclostationary and white, and its time variation can be incorporated
to the system [3]. Therefore, in any case, the input noisen(t) can be considered
WSS. For every noise source inside the mixer, the time-varying gain is a different
function.

2At high frequencies where reactive effects are not negligible, the mixing op-
eration also depends on the input-signal frequency and is better modeled with
a periodically-time-varying transfer functionA(f; t) [8], [3], instead of a pe-
riodically-time-varying gaina(t). Frequency translation is described with the
Fourier components ofA(f; t), the conversion transfer functions instead of
the conversion gains. For simplicity, reactive effects are neglected in our mixer
model. However, the qualitative arguments presented here also apply at high
frequencies.
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(a)

(b)

Fig. 1. (a) A cascade of two mixers. (b) Time-average PSD of noise at the
input, after the first mixer and the output.

The situation is different however if the two LOs are locked to a
common reference frequency. In a superheterodyne receiver which
employs two mixers, it is a common practice to generate the two
LO signals from two PLLs with a common reference frequency,
which means thatfoa=fob is a rational numberm=n (we will assume
below thatm andn are such that a common integer divider greater
than one does not exist). Despite this, a rational frequency ratio
foa=fob = m=n with m or n very large numbers is expected to have
the same practical effect as an irrational frequency ratio. In fact, the
LO frequencies in a receiver chain are often chosen such that they do
not have a simple relation in order to avoid spurious responses.

Assuming a smoothb(t) with low frequency content, we can see
that the conversion gain of mixerB drops rapidly with the order of the
sideband, and only the first few (for example up to 3 or 4) contribute
significantly. Therefore, considering again the integersm andn that
satisfyfoa=fob = m=n, if m is a large integer, in every set of cor-
related frequency components ofna(t) in distance integer multiple of
mfob = nfoa that contribute tofout, only one term contributes sig-
nificantly and only a minor error is introduced by adding the power of
all the components. Ifn is large, assuming a smootha(t), the effect
of noise correlation is also attenuated for a similar reason: the copy
of n(t) aroundnfoa has low power. Concluding, the effect of spectral
correlation is insignificant ifa(t) is smooth andn is large, or ifb(t) is
smooth andm is large, or both. Very often in practice, especially at high
frequenciesa(t) andb(t) are smooth functions, and unless the ratio of
the two LO frequencies is a simple rational numberm=n with m; n
small integers, calculating the time-average at the first mixer output
and treating it as if it were the PSD of WSS noise, does not introduce
a significant error in the noise estimation at the second mixer output.
Nevertheless, there are practical situations where the time-varying gain
of a mixer is not a smooth waveform. An example is the sampling or
subsampling mixer, in which case the time-varying gain is a pulse train
which has high frequency content.

The above argument can be easily visualized in the time domain
with the example of Fig. 2. Assume thatb(t) is an impulse train, so
that mixerB is essentially a sampling mixer as shown in Fig. 2(a) and
that we desire to estimate the time-average power of the samples at the
output of the sampler. Consider that the time-varying power�a(t) of

the cyclostationary noisena(t)—the integral of the time-varying PSD
over all frequencies—at the first mixer output is the periodic function
of time shown in Fig. 2(b). Iffoa = fob, or foa = mfob, we always
samplena(t) when�a(t) is at the same point of the period as shown
in Fig. 2(b), and if instead the time-average of�a(t) is considered at
the input of the sampler, we probably significantly overestimate or un-
derestimate the output noise. In this case, sinceb(t) is not a smooth
function of time and its spectral content does not die out at high fre-
quencies, the effect of spectral correlation is not diminished ifm is
large. Iffoa=fob = m=n is a rational number andn is a small integer,
we sample, repeatedly, only a few points in the period and it is pos-
sible that considering the time-average of�a(t) at the sampler input
will result again in an erroneous noise estimation. However, ifn is a
large number, the same points of the period are repeatedly sampled, but
they are many and uniformly distributed across a period, as shown in
Fig. 2(c), so considering the time-average at the sampler input would
give a practically correct result. Whenfoa=fob is not a rational number,
after long enough time the whole period is uniformly sampled and in
fact the same point is never sampled twice. In this case, time-averaging
at the sampler input provides exactly the correct result.

Let us now examine the effect of the LO frequency relation in a more
quantitative manner. Referring to Fig. 1, we can see thatnb(t) consists
of scaled copies ofn(t) shifted in frequencieskafoa + kbfob, where
ka andkb are the sidebands at which the conversion gain of mixersA
andB, respectively, is significant, determined by the spectral content
of the waveformsa(t) andb(t) and possibly as we shall see below by
filtering the mixer outputs. If two of these frequencies coincide, the
spectral correlation affects the output noise estimation. Ifk0

a andk0

b is
a second set of mixer sidebands, the relation

kafoa + kbfob = k0

afoa + k0

bfob (1)

or

kb � k0

b

ka � k0

a

= �
foa
fob

(2)

can only hold iffoa=fob is a rational number, as we also concluded
before. Furthermore, iffoa=fob = m=n, spectral correlation has an
effect only if there are integerska, k0

a, kb, andk0

b that represent mixer
sidebands with significant conversion gain such that

kb � k0

b

ka � k0

a

= �
m

n
: (3)

If for example,a(t) andb(t) are sinusoidal with frequenciesmfo and
nfo, wherefo is some reference frequency,ka, k0

a, kb, andk0

b can
only be+1 and�1, and spectral correlation can have an effect only if
n = m.

Similarly, one can examine the effect of spectral correlation when a
third mixerC follows the chain ofA andB. Denoting the frequency
of C by foc and the sidebands ofC with some significant conversion
gain bykc andk0

c, spectral correlation affects the noise estimation only
when there are mixer sidebands with significant conversion gain, such
that

kafoa + kbfob + kcfoc = k0

afoa + k0

bfob + k0

cfoc: (4)

If the LO frequencies are related, i.e.,foa = mfo, fob = nfo, foc =
pfo, wherefo is some reference frequency andm; n, andp integers
with no common factors, (4) becomes

(ka � k0

a)m+ (kb � k0

b)n+ (kc � k0

c)p = 0: (5)

In this case, it is possible that conditions (4) and (5) hold for low-order
sidebands, even if the LO frequency relation is not simple. For example,
if foa = 2000 MHz, fob = 660 MHz andfoc = 10 MHz the above
equations are satisfied forka�k0

a = 1, kb�k0

b = �3, andkc�k0

c =
�2.
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Fig. 2. Sampling cyclostationary noise.

Fig. 3. Filtering cyclostationary noise.

B. Filtering a Cyclostationary Noise Process

If filtering takes place at the output of a mixer, as in Fig. 3(a), it is
possible that the noise at the output of the filter is stationary, and no
cyclostationary noise considerations need to be made, or that the char-
acteristics of the cyclostationary noise change. Some relevant theorems
have been presented in [5], where they were derived in a mathematical
way. Similar results can be found elsewhere [3], [9]. These theorems
become intuitive by examining filtering of a set of correlated frequency
components. Let us consider a cyclostationary noise process with cycle
frequencyfo and a set of correlated frequency components in distance
integer multiple offo. The results of [5] can be observed as follows.

1) Consider a low-pass filter with cut-off frequencyfo=2 or lower,
as in Fig. 3(b). One can see that only one component of the set of corre-
lated components can fall in the window[�fo=2; fo=2] that the filter
allows to pass. Therefore any frequency components at the output of
the filter are uncorrelated and the output noise is stationary.

2) Consider a single-sided bandpass filter, either upper band or lower
band with respect tofo, and bandwidthfo=2 or less, as in Fig. 3(c).
After filtering, only one frequency component of the correlated set re-
mains, and the resulting noise is stationary.

3) Consider a bandpass filter with center frequencyfo and bandwidth
fo or less, as in Fig. 3(d). One can easily see that after filtering, the re-
maining correlated frequency components can only be in distance2fo,

and therefore only the stationary and the second-order cyclic spectra
can exist.

Many other similar results can be visualized in a similar manner.
For example if the filter is a low-pass filter with a cut off frequency
fo, the resulting process can contain only the stationary and first-order
cyclic spectrum. A possible application of such a result as well as of
result 3 above is the following. If it is known that the random signal at
the output of mixerA in Fig. 1 does not contain thenth order cyclic
spectrum,ka � k0

a
in (2)–(5) cannot be equal ton.

In a receiver chain the first mixer is typically followed by a bandpass
IF filter. In this case one can apply the following theorem, which can
also be verified easily by inspection.

If cyclostationary noise with cycle frequencyfo passes through
a bandpass filter with bandwidthfo=2 or less, and the frequencies
k(fo=2) wherek is an integer do not fall into the passband, the output
noise is stationary.

The latter has been used in [3] but here we clearly define the nec-
essary properties of the filter passband. Results 1 and 2 above can be
seen as individual cases of this last theorem.

C. Mixing a Band-Limited Cyclostationary Noise Process

In the previous section the passband characteristics of a filter fol-
lowing a mixer were related to the frequency of the LO waveform
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Fig. 4. Mixing band-limited cyclostationary noise.

driving the mixer in order for the output noise signal to have certain
properties. Here, we will examine the case of Fig. 4(a) in which a gen-
eral cyclostationary signal for which we have no information about the
location of the correlated frequency components, passes through a filter
and the filter output is fed to a mixer (or more generally a time-varying
circuit). We will relate the filter characteristics with the frequencyfo
of the LO signal driving the mixer, in order for the time-average noise
at the mixer output to be unaffected by the spectral correlation.

If the filter is low-pass with cut-off frequencyfo=2 or lower as shown
in Fig. 4(b), no overlap will take place during mixing, and the average
noise at the output will not be affected by spectral correlation. This
situation appears often at the back-end of a receiver where sampling
(for example performed by a switched capacitor filter or an analog to
digital converter) is proceeded by an anti-alias filter.

If the filter is bandpass with center frequencyfc and bandwidthw,
as in Fig. 4(c), one can see that overlap will not happen if

j(k � k0)fo + 2foj > w (6)

for all mixer sidebandsk andk0 with some significant conversion gain.
This results from the observation that the positive passband will be
transferred to frequency bands with centerkfo + fc and widthw, the
negative passband will be transferred to frequency bands with center
k0fo � fc and widthw, and to avoid overlap the centers of the two
frequency bands must be in distance greater thanw.

III. T WO CASESWHERESPECTRALCORRELATION ISSIGNIFICANT

A practical situation that deserves attention is when an interfering
signal or blocker is present at the input of a receiver. If this signal is
strong it can change the operating point of the devices and affect the cir-
cuit noise performance. The noise generated by the circuit will acquire
cyclostationary characteristics with cycle equal to the blocker period,
and if the blocker is not filtered or modulated to a different frequency,
it acts as a common LO for successive cascaded blocks. In this case, al-
though a block can still be characterized with the noise figure under the
presence of a blocker, use of the formulas for cascaded blocks to esti-
mate the noise figure of the whole receiver can lead to an inaccurate pre-

diction. This situation could arise for example when an in-band blocker
is processed together with the weak desirable signal by the LNA and
the RF mixer of a receiver.

Let us now consider noise introduced to a mixer from the LO port.
The LO is a periodically time-varying circuit and it is possible that the
noise at its output contains some cyclostationary component. The time-
varying processing of this signal by the mixer tracks exactly the time
variation of the noise statistics since the mixer instantaneous operating
point is determined by the LO drive. Therefore, it is not correct to time-
average the noise PSD at the LO output and use it as if it were a WSS
process.

IV. CONCLUSION

We qualitatively examined the significance of the cyclostationary na-
ture of the noise generated in a communication system. We saw that cy-
clostationarity is equivalent to the presence of correlated components in
the frequency spectrum. From the above discussion it results that in the
majority of the practical cases, use of the concept of noise figure and
considering only the time-average component of the cyclostationary
noise at the input and the output of every block does not introduce sig-
nificant inaccuracy in the noise characterization of the overall system
for two reasons. First, the local oscillator frequencies used usually do
not have a simple relation and the situation resembles the case at which
the two frequencies are noncommensurate. Second, usually filtering
takes place in several places in the receiver chain which converts the cy-
clostationary noise to stationary noise. However, we examined practical
cases where cyclostationarity cannot be ignored, namely when the sub-
sequent stage is time-varying synchronously with the cyclostationarity,
as for example when the subsequent stage is driven nonlinearly by the
stage generating cyclostationary noise. In these situations, if noise char-
acterization is desirable by means of a circuit simulator which provides
the time-average output noise the time-varying circuit blocks must be
simulated together. Alternatively, the simulator of [5] can be used to
calculate the cyclic spectra of every block separately and create ap-
propriate macro-models which can then be used in a behavioral level
simulation.
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Optimal Wire-Sizing Function Under the Elmore Delay
Model With Bounded Wire Sizes

Yu-Min Lee, Charlie Chung-Ping Chen, and D. F. Wong

Abstract—In this brief, we develop the optimal wire-sizing functions
under the Elmore delay model with bounded wire sizes. Given a wire seg-
ment of length , let ( ) be the width of the wire at position , 0

. We show that the optimal wire-sizing function that minimizes
the Elmore delay through the wire is ( ) = , where 0
and 0 are constants that can be computed in (1) time. In the case
where lower bound ( 0) and upper bound ( 0) of the wire
widths are given, we show that the optimal wire-sizing function ( ) is a
truncated version of that can also be determined in (1) time. Our
wire-sizing formula can be iteratively applied to optimally size the wire seg-
ments in a routing tree.

Index Terms—Elmore delay, optimal, wire sizing.

I. INTRODUCTION

As very large-scale integration (VLSI) technology continues to scale
down, interconnect delay has become the dominant factor in deep sub-
micron designs. As a result, wire sizing plays an important role in
achieving desirable circuit performance. Recently, many wire-sizing
algorithms have been reported in the literature [1]–[5]. All these algo-
rithms size each wire segment uniformly, i.e., identical width at every
position on the wire. In order to achieve nonuniform wire sizing, ex-
isting algorithms have to chop wire segments into large number of small
segments. Consequently, the number of variables in the optimization
problem is increased substantially and thus results in long runtime and
large storage.
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Fig. 1. Six types of optimal wire-sizing functions.

In [6], the optimal wire shape with minimal Elmore delay without
wire-size constraints are presented using the calculus of variation
methods. In this brief, we develop the optimal wire-sizing function for
minimal Elmore delay with the wire-size constraints using only basic
mathematical methods. Given a wire segmentW of lengthL, a source
with driver resistanceRd, and a sink with load capacitanceCL. For
eachx 2 [0; L], let f(x) be the wire width ofW at positionx. Fig. 1
shows an example. Letr0 andc0 be the respective wire resistance and
wire capacitance per unit square. LetD be the Elmore delay from
the source to the sink ofW . We show that the optimal wire-sizing
function f that minimizesD satisfies a differential equation which
can be analytically solved. We havef(x) = ae�bx, wherea > 0
andb > 0 are constants that can be computed inO(1) time. These
constants depend onRd,CL,L, r0, andc0. Our method is extended to
solve the case where lower bound (L > 0) and upper bound (U > 0)
on the wire widths are given, i.e.,L � f(x) � U , 0 � x � L, we
show that the optimal wire-sizing functionf(x) is a truncated version
of ae�bx which can also be determined inO(1) time. Our wire-sizing
formula can be iteratively applied to optimally size the wire segments
in a routing tree.

The remainder of this brief is organized as follows. In Section II,
we show how to compute the Elmore delay for nonuniformly sized
wire segments. In Section III-A, we derive the optimal wire-sizing
function when the wire widths are not constrained by any bounds. In
Section III-B, we consider the case where lower and upper bounds for
the wire widths are given. We discuss the importance of our wire-sizing
formula in sizing the wire segments in a routing tree in Section IV. Fi-
nally, we present some experimental results and concluding remarks in
Section V.

II. ELMORE DELAY MODEL

We use the Elmore delay model [7]. SupposeW is partitioned into
n equal-length wire segments, each of length4x = L=n. Let xi be
i4x, 1 � i � n. The capacitance and resistance of a wire segment
i can be approximated byc04xf(xi) andr04x=f(xi), respectively.
Thus, the Elmore delay throughW can be approximated by

Dn = Rd CL +

n

i=1

c0f(xi)4x

+

n

i=1

r04x

f(xi)

n

j=i

c0f(xj)4x+ CL : (1)

The first term is the delay of the driver, which is given by the driver
resistanceRd multiplied by the total capacitance ofW andCL. The
second term is the sum of the delay in each wire segmenti, which is
given by its own resistancer04x=f(xi) multiplied by its downstream
capacitance n

j=i
c0f(xj)4x+CL. (See Fig. 2.) Asn!1,Dn !

D where

D = Rd CL +
L

0

c0f(x)dx

+
L

0

r0
f(x)

L

x

c0f(t) dt+ CL dx (2)

is the Elmore delay through the driver andW .
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