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1. Introduction
The proliferation of wireless and mobile products have
dramatically increased the number and variety of low
power, high performance electronic systems being
designed. Noise is an important limiting factor in these
systems. The noise generated is often strongly cyclosta-
tionary. This type of noise cannot be predicted using
SPICE, nor is it well handled by traditional test equipment
such as spectrum analyzers or noise figure meters, but it is
available from the new RF simulators, such as SpectreRF.

The origins and characteristics of cyclostationary noise are
described in a way that allows designers to understand the
impact of cyclostationarity on their circuits. In particular,
cyclostationary noise in time-varying systems (mixers)
and autonomous systems (oscillators) is discussed.

2. What is Noise?
Noise free systems are deterministic, meaning that repeat-
ing the same experiment produces the same result. Noisy
systems are stochastic — repeating the same experiment
produces slightly different results each time. An experi-
ment is referred to as a trial. A group of experiments is
referred to as an ensemble of trials, or simply an ensemble.

3. Ensemble Averages
Assume that vn(t) = v(t) + n(t), where v(t) is the determin-
istic signal, n(t) is the noise, and vn(t) is the combined sig-
nal.

Noise is characterized using ensemble averages (as
opposed to time averages). An averages over many trials is
referred to as an expectation, and denoted E{·}. One
ensemble average is the mean. The mean of the combined
signal is an estimate of the noise free signal, E{vn(t)} =
v(t). The mean of the noise alone is generally 0, E{n (t)} =
0. The variance, var(n(t)) = E{n(t)2} − E{n(t)}2, is a mea-
sure of the power in the noise. The autocorrelation, Rn(t,
τ) = E{n(t) n(t−τ)}, is a measure of how points on the
same signal separated by τ seconds are correlated. The
autocorrelation is related to the variance by var(n(t)) =
Rn(t, 0). The Fourier transform of the autocorrelation func-
tion averaged over t is the time-averaged power spectral
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What is Noise?

Noise signals are stochastic

–Small random variation versus time

–Repeated identical trials give slightly different results

–A group of trials is an ensemble

time

vn(t) = v(t) + n(t)
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Ensemble Averages

Expectation operator E{·} is average over many trials

Mean: E{n(t)} = 0 and E{vn(t)} = v(t)

Variance: var{n(t)} = E{n(t)2} is noise power

Autocorrelation: Rv(t,τ) = E{v(t)v(t+τ)}

Power spectral density:

E{·}
n

t

vn(t) = v(t) + n(t)

∫ ττ= τπ detRfS fj
v
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density, or PSD. It is the power in the noise as a function
of frequency.

4. White Noise
Completely uncorrelated noise is known as white noise.
For white noise the PSD is a constant and the autocorrela-
tion function is an impulse function centered at 0.

5. Colored Noise
Energy storage elements cause the circuit to exhibit a fre-
quency response that is shaped, it is not flat with fre-
quency. As such, it causes the PSD to be shaped. This is
referred to as coloring the noise. Colored noise has a PSD
that varies with frequency.

Energy storage elements also cause the noise to be corre-
lated. This occurs simply because noise produced at one
point in time is stored in the energy storage element, and
comes out some time later. This results in the autocorrela-
tion function having nonzero width.

Notice that in this case, both the spectrum is shaped and
the noise is correlated over time. This is a general prop-
erty, shaping the noise in the frequency domain implies
that the noise is correlated in time, and visa versa.

6. Cyclostationary Noise
The ensemble averages for noise can vary with time. If
they vary in a periodic fashion, they are referred to as
being cyclostationary.

7. Origins of Cyclostationarity
Cyclostationary noise is generated by circuits with peri-
odic or quasiperiodic operating points. The time-varying
operating point modulates the noise generated by bias-
dependent noise sources, and modulates the transfer func-
tion from the noise source to the output. Both result in
cyclostationary noise at the output.

As suggested by the name, modulated noise sources can be
modeled by modulating the output of stationary noise
sources.
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White Noise

Noise at each time point is independent of previous noise

Noise is uncorrelated in time

Spectrum is white

Examples: thermal noise, shot noise

R(t,τ) S(f )

fτ

Fourier
Transform
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Colored Noise

Noise current deposits charge on
capacitor

Charge decays with RC time
constant

Voltage is correlated in time
because of persistent charge

Spectrum is shaped by frequency
response of circuit

Noise at different frequencies is
independent (uncorrelated)

Noise spectrum calculated
frequency-by-frequency with circuit
transfer function

Time correlation ⇔⇔⇔⇔ Frequency shaping

R(t,τ) S(f )Fourier
Transform

τAutocorrelation fSpectrum
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Cyclostationary Noise

Cyclostationary noise is periodically modulated noise
– Results when circuits have periodic operating points

Noise is cyclostationary if its autocorrelation is periodic in t

– Implies variance is periodic in t

– Implies noise is correlated versus frequency
– More about this later

Cyclostationarity generalizes to non-periodic variations
– In particular, multiple periodicities

7

Origins of Cyclostationarity

Modulated (time-varying) noise sources
– Periodic bias current generating shot noise

– Periodic variation in resistance of resistor generating thermal noise

Modulated (time-varying) signal path
– Modulation of gain by nonlinear devices and periodic operating point

Modulated
noise source

Modulated
signal path
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8. Cyclostationary Noise vs. Time
This is a simple example of cyclostationary noise. A peri-
odically operating switch between the noise source (the
resistor produces white thermal noise) and the observer
causes the output noise to vary periodically.

It can be said that cyclostationary noise is “shaped in
time”.

9. Cyclostationary Noise vs. Frequency
With no energy storage elements the noise is completely
uncorrelated (noise at a particular time is uncorrelated
with the noise at any previous time) and therefore is white,
even though it is cyclostationary. One cannot tell that
noise is cyclostationary by just observing the time-average
PSD.

10. Modulated Noise Spectrum
In the example, stationary noise with an arbitrary spectrum
is modulated by some periodic signal. This is representa-
tive of both ways in which cyclostationary noise is gener-

ated (modulated noise sources and modulated signal
paths).

Modulation can be interpreted as multiplication in the time
domain or convolution in the frequency domain. Thus, the
modulation by a periodic signal causes the noise to mix up
and down in multiples of the modulation frequency.

Noise from the source at a particular frequency f is repli-
cated and copies appear at f ± kf0. Conversely, noise at the
output at a particular frequency f has contributions from
noise from the sources at frequencies f ± kf0.

Modulation acts to shape the noise in the time-domain and
correlate the noise in the frequency-domain.

11. Frequency Correlations in Spectrum
As just shown, modulation causes noise to be replicated
and translated in frequency. Thus, noise separated by kf0 is
correlated where f0 is the modulation frequency. Remem-
ber, noise folds across DC, so noise in upper and lower
sidebands are correlated. In other words, in the top dia-
gram noise is shown at both negative and positive frequen-
cies. This implies a complex phasor representation is
being used. When this complex signal is converted to a
real signal, the complex conjugate of signals at negative
frequencies get mapped to positive frequencies. In this
way, the signal at frequencies ∆ω above and below a har-
monic are correlated. These frequencies are referred to as
upper and lower sidebands of the harmonic.

12. Duality of Shape and Correlation
Recall that

shape in frequency ⇔ correlation in time

Now also see that

shape in time ⇔ correlation in frequency

This is the duality of shape and correlation.
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Cyclostationary Noise vs. Time

Noise transmitted only during ON state

Noise is shaped in time
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Noiseless
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Cyclostationary Noise vs. Frequency

No dynamic elements ⇒ no memory ⇒ no coloring

Noise at each time point is uncorrelated with previous noise

Spectrum is white

Noisy Resistor
& Clocked Switch

vo

S( f )

f
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Modulated Noise Spectrum

Noise
source

Periodic
Modulation

Noise
Folding
Terms

Total
Noise

(stationary)

(cyclo-
stationary)
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13. Ways of Characterizing Cyclostationary
Noise
There are three common methods of characterizing cyclos-
tationary noise.

The time-average power spectral density is similar to what
would be measured with a conventional spectrum ana-
lyzer. Since it has a very small effective input bandwidth,
it ignores correlations in the noise and so ignores the
cyclostationary nature of the noise (assuming that the fre-
quency of the variations in the noise is much higher than
the bandwidth of the analyzer). This is the primary output
from SpectreRF’s PNoise analysis.

The second method is to use the spectrum along with
information about the correlations in the noise between
sidebands. This is a complete description of the cyclosta-
tionarity in the noise. It is used when considering the
impact of cyclostationary noise from one stage on a subse-
quent synchronous stage. This would be the case if two
stages were driven by the same LO or clock, or if the out-
put of one stage caused the subsequent stage to behave

nonlinearly. From this form it is relatively easy to deter-
mine the amount of power in the AM or PM components
of the noise. SpectreRF outputs the correlations between
sidebands if noisetype=correlations.

The third method is to track the noise at a point in phase,
or noise versus phase. The noise at a point in phase is
defined as the noise in the sequence of values obtained if a
noisy but otherwise periodic signal is repeatedly sampled
at the same point in phase during each period. It is useful
in determining the noise that will result when converting a
continuous-time signal to a discrete-time signal. It is also
useful when determining the jitter associated with a noisy
signal crossing a threshold. SpectreRF outputs the noise
versus phase if noisetype=timedomain.

14. Removing Cyclostationarity
If a stage that generates cyclostationary noise is followed
by a filter whose passband is constrained to a single side-
band (the passband does not contain a harmonic and has a
bandwidth of less than f0/2, where f0 is the fundamental
frequency of the cyclostationarity), then the output of the
filter will be stationary. This is true because noise at any
any two frequencies within the passband is uncorrelated.

15. Ignoring Cyclostationarity
Consider a stage that generates cyclostationary noise with
modulation frequency f1 that is followed by a stage whose
transfer characteristics vary periodically at a frequency of
f2 (such as a mixer, sampler, etc.). Assume that f1 and f2
are non commensurate (there is no f0 such that f1 = n f0
and f2 = m f0 with n and m both integers). Then there is no
way to shift f1 by a multiple of f2 and have it fall on corre-
lated copy of itself. As a result, the cyclostationary nature
of the noise at the output of the first stage can be ignored
(with regard to it effect on the subsequent stage, the noise
from the first stage can be treated as being stationary and
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Frequency Correlations in Spectrum

Consider cyclostationary noise

– Noise is replicated and offset by kω0

– Noise separated by multiples of ω0 is correlated

– With real signals, spectrum is symmetric
– Upper and lower sidebands are correlated

ω

ω
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Duality of Shape and Correlation
Shape in frequency ⇔ Correlation in time

R(t,τ) S( f )

fτ

Fourier
Transform

Shape in time ⇔ Correlation in frequency
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Ways of Characterizing Cyclostationary Noise

Time-average power spectral density
– useful when cyclostationary nature of noise is not important

Spectrum with correlations
– decomposition into AM/PM components

– multiple synchronous stages

– full formal descriptions

Time-domain descriptions (noise vs. phase)
– thresholds and jitter

– sampled data systems
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we can characterize it using the time-average power spec-
tral density).

If f1 and f2 are commensurate, but m and n are both large
and have no common factors, then many periods of f1 and
f2 are averaged before the exact phasing between the two
repeats. Again, the cyclostationary nature of the noise at
the output of the first stage can be ignored.

16. When to Use the Time-Averaged PSD
You are free to use the time-averaged power spectral den-
sity (PSD) when the cyclostationary nature of the noise
will be eliminated or ignored by subsequent stages. Filter-
ing eliminates the cyclostationary nature of noise, convert-
ing it to stationary noise, if the filter is a single-sideband
filter with bandwidth less that f0/2. The cyclostationary
nature of the noise is ignored if the subsequent stage is not
synchronous with the noise, or if it is synchronous but run-
ning at a sufficiently different frequency so that averaging
serves to eliminate the cyclostationarity.

17. When Not to Use the Time-Averaged PSD
When a stage producing cyclostationary noise drives a

subsequent stage that has a time-varying transfer function
that is synchronous with the first, then ignoring the cyclos-
tationary nature of the noise from the first (using the time-
average PSD) generates incorrect results. One common
situation where this occurs is when a switched-capacitor
filter is followed by a sample-and-hold, and both are
clocked at the same rate (or a multiple of the same rate).
Another common situation is when the first stage produces
a periodic signal that is large enough to drive the subse-
quent stage to behave nonlinearly. In this case, the large
periodic output signal modulates the gain of the subse-
quent stage in synchronism with the cyclostationary noise
produced by the first stage. This occurs when an oscillator
drives the LO port of a mixer, when one logic gate drives
another, or when a large interfering signal drives both
stages into compression.
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Filtering can remove cyclostationarity
– Keeps noise-folding terms, but removes correlated frequencies
– Filtering must be single-sided with BW < f0/2

Examples : final mixer stages, SCF w/anti-aliasing

Removing Cyclostationarity

ω

LPF OUTIF

LO
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Ignoring Cyclostationarity
Filtering in Disguise

Subsequent stage is non-synchronous
– Different reference oscillator (spectrum analyzer)

Average over many periods
– Differing frequencies f0 and f1 with f0 / f1 = n/m and n, m large

(mixer chain)

f
f1

f
f2
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When to Use the Time-Averaged PSD

When subsequent stage is non-synchronous with the noise
– Spectrum analyzer

When subsequent stage runs at a sufficiently different frequency f1

– f0/f1 = N/M and both M, N are large (> 4)

When filtering eliminates correlation in the noise
– SSB filter with BW < f0/2

17

When Not to Use Time-Averaged PSD

When subsequent stage shares the same LO or clock
– Switched-capacitor filter followed by S&H and/or ADC

When output signal causes subsequent stage to respond
nonlinearly

– Oscillator driving mixer

– Chain of logic gates

– Large interferer in receiver chain
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In these situations, consider the cyclostationary nature of
the noise produced in the first stage when determining the
overall noise performance of the stages together.

18. Sidebands and Phasors
One can separate noise near the carrier into AM and PM
components. Consider the noise at sidebands at frequen-
cies ∆ω from the carrier. Treat both these sidebands and
the carrier as phasors. Individually add the sideband pha-
sors to the carrier phasor. The sideband phasors are at a
different frequency from the carrier, and so will rotate rel-
ative to it. One sideband will rotate at ∆ω, and the other at
−∆ω. If the noise is not cyclostationary, then the two side-
bands will be uncorrelated. Meaning that their amplitude
and phase will vary randomly relative to each other. Com-
bined, the two sideband phasors will trace out an ellipse
whose size, shape, and orientation will shift randomly.
However, it the noise is cyclostationary, then the side-
bands are correlated. This reduces the shifting in the shape
and orientation of the ellipse traced out by the phasors. If
the noise is perfectly correlated, then the shape and orien-
tation remain unchanged, though its size still shifts ran-
domly.

The shape and orientation of the ellipse is determined by
the relative size of the AM and PM components in the
noise.

19. AM/PM Noise
With cyclostationary noise, the noise in various sidebands
is correlated. Depending on the magnitude and phase of
the correlation, the noise at the output of the circuit can be
AM noise, PM noise, or some combination of the two. For
example, oscillators almost exclusively generate PM noise
near the carrier whereas noise on the control input to a
variable gain amplifier results almost completely in AM
noise at the output of the amplifier.

When considering the noise about a carrier frequency, the
noise can decomposed into AM and PM components.
Having one component of noise dominate over the other is
a characteristic of cyclostationary noise. Stationary noise
can also be decomposed into AM and PM components, but
there will always be equal amounts of both.

20. Noise + Compression = Phase Noise
It is a general rule that when stationary noise is passed
through a stage undergoing compression or saturation, the
noise at the output is predominantly phase noise. Station-
ary noise contains equal amounts of amplitude and phase
noise. Passing it through a stage undergoing compression
causes the AM noise to be suppressed, leaving mainly the
PM noise.

21. Oscillator Phase Noise
It is the nature of all autonomous systems, such as oscilla-
tors that they produce relatively high levels of noise at fre-
quencies close to the oscillation frequency. Because the
noise is close to the oscillation frequency, it cannot be
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To separate noise into AM and PM components
– Consider noise sidebands separated from carrier by ∆ω
– Add sideband phasors

to tip of carrier phasor
– Relative to carrier,

one rotates at ∆ω,
the other at −∆ω

Sidebands and Phasors

ω

Slide 19

Slide 20

19

AM/PM Noise
SSB Uncorrelated

DSB
DSB with AM
Correlation

DSB with PM
Correlation

Upper and Lower Sidebands Shown Separately

Upper and Lower Sidebands Shown Summed
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Noise + Compression = Phase Noise

With compression or saturation
– Carrier causes gain to be periodically modulated

– Modulation acts to suppress AM component of noise
– Leaving PM component

Examples
– Oscillator phase noise

– Jitter in logic circuits

– Noise at output of limiters
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removed with filtering without also removing the oscilla-
tion signal. It is the nature of nonlinear oscillators that this
noise be predominantly in the phase of the oscillation.
Thus, the noise cannot be removed by passing the signal
through a limiter. This noise is referred to as oscillator
phase noise.

22. Importance of Oscillator Phase Noise
In a receiver, the phase noise of the LO can mix with a
large interfering signal from a neighboring channel and
swamp out the signal from the desired channel even
though most of the power in the interfering IF is removed
by the IF filter. This process is referred to as reciprocal
mixing.

Similarly, phase noise in the signal produced by a nearby
transmitter can interfere with the reception of a desired
signal at a different frequency produced by a distant trans-
mitter.

23. Noise in a Linear Oscillator
Consider a feedback oscillator with a loop gain of H(jω).
X(jω) is taken to represent some perturbation stimulus and
Y(jω) is the response of the oscillator to X. The
Barkhausen condition for oscillation states that the effec-
tive loop gain equals unity and the loop phase shift equals
360 degrees at the oscillation frequency ω0. The gain from
the perturbation stimulus to the output is Y(jω)/X(jω) =
H(jω)/H(jω)–1, which goes to infinity at the oscillation
frequency ω0.

The amplification near the oscillation frequency is quanti-
fied by assuming the loop gain varies smoothly as a func-
tion of frequency in this region. If ω = ω0 + ∆ω, then
H(jω) ≈ H(jω0) + dH/dω ∆ω and the transfer function
becomes Y(jω+∆ω)/X(jω+∆ω) ≈ (H(jω) + dH/dω ∆ω) /
(H(jω) + dH/dω ∆ω – 1). Since H(jω0) = 1 and dH/dω ∆ω
<< 1 in most practical situations, the transfer function
reduces to Y(jω+∆ω)/X(jω+∆ω) ≈ 1/(dH/dω ∆ω).

Thus, for circuits that contain only white noise sources, the
noise voltage (or current) is inversely proportional to ∆ω,
while the noise power spectral density is proportional 1/
∆ω2 near the oscillation frequency.

The amplification of noise near the carrier frequency is
created by a linear phenomenon that is an natural conse-
quence of the oscillator’s complex pole pair on the jω axis
at ω0.

24. Barkhausen Criteria for Oscillation —
The Origins of Phase Noise
The Barkhausen criterion for oscillation in a feedback
oscillator is that the effective gain around the loop must be
unity for stable oscillation (loop gain magnitude equals 1
and loop phase shift equals 360°). To assure the oscillator
starts, the initial loop gain is greater than one, which
causes the oscillation amplitude to grow until the amplifier
goes into compression far enough so that the effective loop
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Oscillator Phase Noise

High levels of noise near the carrier
– Exhibited by all autonomous systems

– Noise is predominantly in phase of oscillator
– Cannot be eliminated by passing signal through a limiter

– Noise is very close to carrier
– Cannot be eliminated by filtering
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Importance of Oscillator Phase Noise

In Receivers: Reciprocal Mixing

In Transmitters: Interference

f

InterfererLO
Desired

f

Interfering IF

Desired IF

f

Nearby Transmitter
Distant Transmitter
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H(jω)ΣX Y

Noise in a Linear Oscillator
Linear Feedback Oscillator
– Consider transfer function from perturbation to output

– Since H(ω0) = 1, linear oscillator has poles at ± jω0
– Noise is concentrated near carrier

– No propensity to accentuate phase noise
– X stationary → amplitude and phase noise are balanced in Y

log Y

log ∆ω

Y

ω

H(ω0 + ∆ω)

1 − H(ω0 + ∆ω)
=

Y

X
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gain equals 1. If, for some reason the amplitude of the
oscillation decreases, the amount of compression reduces,
causing the loop gain to go above 1, which causes the
oscillation amplitude to increase. Similarly, if the oscilla-
tion amplitude increases, the amplifier goes further into
compression, causing the loop gain to go below 1, which
causes the amplitude to decrease. Thus, the nonlinearity of
the amplifier is fundamental to providing a stable oscilla-
tion amplitude, and also causes amplitude variations to be
suppressed. Any amplitude variations that result from
noise are also suppressed, leaving only phase variations.
As a result, the noise at the output of an oscillator is gener-
ally referred to as oscillator phase noise.

25. The Oscillator Limit Cycle
Consider plotting the capacitor voltage against the induc-
tor current in a resonant oscillator. In steady state, the tra-
jectory is a stable limit cycle. Now consider perturbing the
oscillator with an impulse x and assume that the response
to the perturbation is ∆y. Separate ∆y into amplitude and
phase variations,

∆y(t) = (1 + α(t))y(t + φ(t)/2π fc) − y(t).

where ∆v(t) represents the perturbed output voltage of the
oscillator, α(t) represents the variation in amplitude, φ(t) is
the variation in phase, and fc is the oscillation frequency.

Since the oscillator is stable and the duration of the distur-
bance is finite, the deviation in amplitude eventually
decays away and the oscillator returns to its stable orbit
(α(t) → 0 as t → ∞). In effect, there is a restoring force
that tends to act against amplitude noise. This restoring
force is a natural consequence of the nonlinear nature of
the oscillator and at least partially suppresses amplitude
variations.

Since the oscillator is autonomous, any time-shifted ver-
sion of the solution is also a solution. Once the phase has
shifted due to a perturbation, the oscillator continues on as

if never disturbed except for the shift in the phase of the
oscillation. There is no restoring force on the phase and so
phase deviations accumulate. A single perturbation causes
the phase to permanently shift (φ(t) → ∆φ as t → ∞).

26. The Oscillator Limit Cycle (cont.)
On the previous slide it was pointed out that after an oscil-
lator has been perturbed by an impulse, α(t) → 0 and φ(t)
→ ∆φ as t → ∞. If we neglect any short term time con-
stants, it can be inferred that the impulse response of the
phase deviation φ(t) can be approximated with a unit step
s(t). The phase shift over time for an arbitrary input distur-
bance u is

φ(t) ∼ ∫ s(t−τ)u(τ)dτ = ∫ u(t) dt,

or the power spectral density (PSD) of the phase is

Sφ( f ) ∼ Su( f )/(2πf )2

This represents another way of explaining why oscillator
noise is primarily phase noise and why the noise grows
with 1/f 2 at frequencies close to the carrier frequency.
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H(jω, V0)ΣX Y

Barkhausen Criteria for Oscillation
The Origins of Phase Noise

Nonlinear Feedback Oscillator

Barkhausen Criteria
–|H(jω, V0)| = 1 ∠ H(jω, V0) = 0

– To assure reliable operation, choose H(jω, 0) > 1
– As oscillation builds, amplifier compresses and

–H(jω, V) → 1 as V → V0

– Amplitude is determined by nonlinearity of oscillator
– Variations in amplitude are suppressed by nonlinearity
– Variations in phase are unaffected
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The Oscillator Limit Cycle
Solution trajectory follows a stable orbit
– Amplitude is stabilized

– Phase is free to drift

If perturbed with an impulse
– Response is ∆y

– Decompose into amplitude and phase

∆y(t) = (1 + α(t))y(t + φ(t)/2π fc) − y(t)

– Amplitude deviation, α(t),
is resisted by mechanism
that controls output level

– Phase deviation, φ(t), accumulates

φ(t) → ∆φ as t → ∞

t0
t1

t2

t3

t4

y1

y2

∆y(0)
t1

t0

t2

t3

t4

∆φ4
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The Oscillator Limit Cycle (cont.)
If perturbed with an impulse
– Amplitude deviation dissipates

α(t) → 0 as t → ∞
– Phase deviation persist

φ(t) → ∆φ as t → ∞
– Impulse response for phase is

approximated with a step s(t)

For arbitrary perturbation u(t)

Sv( f )

(2π f )2
Sφ( f ) =

y1

y2

∆y(0)

∆φ

∫ ∫=τττ−∝φ dttudutst )()()()(
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27. Difference Between Sφ and Sv Noise

There are two different ways of characterizing noise in the
same oscillator. Sφ is the spectral density of the phase and
Sv is the spectral density of the voltage. Sv contains both
amplitude and phase noise components, but with oscilla-
tors the phase noise dominates except at frequencies far
from the carrier and its harmonics. Sv is directly observ-
able on a spectrum analyzer, whereas Sφ is only observable
if the signal is first passed through a phase detector.
Another measure of oscillator noise is L, which is simply
Sv normalized to the power in the fundamental.

As t → ∞ the phase of the oscillator drifts without bound,
and so Sφ(ω) → ∞ as ω → 0. However, even as the phase
drifts without bound, the excursion in the voltage is lim-
ited by the diameter of the limit cycle of the oscillator.
Therefore, as ∆ω → 0 the PSD of v flattens out. Sv has a
corner frequency that defines its linewidth. The more
phase noise, the broader the linewidth (the higher the cor-
ner frequency), and the lower the signal amplitude within
the linewidth. This happens because the phase noise does
not affect the total power in the signal, it only affects its
distribution. Without phase noise, Sv(ω) is a series of
impulse functions at the harmonics of the oscillation fre-
quency. With phase noise, the impulse functions spread,
becoming fatter and shorter but retaining the same total
power.

The voltage noise Sv is considered small outside the line-
width and thus can be accurately predicted using small sig-
nal analyses. Conversely, the voltage noise within the
linewidth is large and cannot be predicted with small sig-
nal analyses. Thus, small signal noise analysis, such as is
available from RF simulators, is valid only up to the cor-
ner frequency (it does not model the corner itself).

28. Oscillators and Frequency Correlation
With driven cyclostationary systems that have a stable
time reference, the correlation in frequency is a series of

impulse functions separated by f = 1/T. Thus, noise at f1 is
correlated with noise at f2 if f2 = f2 + kf, where k is an
integer, and not otherwise. However, the frequency pro-
duced by oscillators that exhibit phase noise is not stable.
And while the noise produced by oscillators is correlated
across frequency, the correlation is not a set of equally
spaced impulses as it is with driven systems. Instead, the
correlation is a set of smeared impulses. Thus, noise at f1
is correlated with f2 if f2 = f2 + kf, where k is close to
being integer. The correlation impulses have a finite line-
width just like the phase noise itself. Thus, technically, the
noise produced by oscillators is not cyclostationary.
Though in practice, the distinction does not appear to be
very significant.

29. Summary
This presentation reviewed some basic noise concepts and
then introduced how a periodically-varying operating
point results in the generation of cyclostationary noise.
Cyclostationary noise is modulated noise, and it was
shown that in the frequency domain this implies that the
noise is correlated for frequency offsets of exactly kf0. The
duality of shape and correlation in colored and cyclosta-
tionary noise was pointed out. There are different ways of
characterizing cyclostationary noise, and two were dis-
cussed further: the time-averaged PSD, which ignores the
cyclostationary nature of the noise, and the PSD along
with frequency correlations. It was shown when it is possi-
ble to use the simpler time-averaged PSD and when it is
not. Finally, cyclostationary noise can be decomposed into
AM and PM components. How this happens was illus-
trated and it was pointed out that circuits that exhibit com-
pression naturally convert noise into phase noise.
Compression is a inherent part of any oscillator, and this is
why they create phase noise. Oscillator phase noise was
described.

Missing from this presentation is a third way in which
cyclostationary noise is characterized, as a noise versus
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Difference Between Sφφφφ and Sv Noise

Oscillator phase drifts without bound
– Sφ(ω) → ∞ as ω → 0

Voltage is bounded, must remain on limit cycle
– Total signal power is independent of noise level

– Corner frequency is proportional to noise level
– PNoise computes Sv(∆ω) but does not predict corner

Sφ(ω)

ω

Sv(∆ω)

∆ω
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Oscillators and Frequency Correlation
Noiseless oscillator

Noise in phase blurs time references and correlations

ω

ω

y t f t f t T f t( ) ( ); ( ) ( )= + =

WGN=+= dtdtfty /);()( φφ
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time. This is useful when considering sampled-data cir-
cuits (such as switched-capacitor filters and sample-and-
holds) and thresholding circuits (such as comparators and
digital logic). It is hoped that this presentation will be
expanded to include these topics and presented at CICC
2000.
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Summary

Time-varying bias impacts noise analysis
Duality of time/frequency shape and frequency/time correlation
Spectral descriptions of noise

– mixers, filters, sometimes oscillators

Time-domain descriptions of noise (not covered)
– gates, PLLs, sometimes oscillators

Time-varying small-signal analysis provides mathematical
framework for computation (not covered)
Cyclostationary Noise in RF Circuits 10 of 10 Joel Phillips & Ken Kundert


	1. Introduction
	2. What is Noise?
	3. Ensemble Averages
	4. White Noise
	5. Colored Noise
	6. Cyclostationary Noise
	7. Origins of Cyclostationarity
	8. Cyclostationary Noise vs. Time
	9. Cyclostationary Noise vs. Frequency
	10. Modulated Noise Spectrum
	11. Frequency Correlations in Spectrum
	12. Duality of Shape and Correlation
	13. Ways of Characterizing Cyclostationary Noise
	14. Removing Cyclostationarity
	15. Ignoring Cyclostationarity
	16. When to Use the Time-Averaged PSD
	17. When Not to Use the Time-Averaged PSD
	18. Sidebands and Phasors
	19. AM/PM Noise
	20. Noise + Compression = Phase Noise
	21. Oscillator Phase Noise
	22. Importance of Oscillator Phase Noise
	23. Noise in a Linear Oscillator
	24. Barkhausen Criteria for Oscillation — The Origins of Phase Noise
	25. The Oscillator Limit Cycle
	26. The Oscillator Limit Cycle (cont.)
	27. Difference Between Sf and Sv Noise
	28. Oscillators and Frequency Correlation
	29. Summary

