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Introduction to RF Simulation and its Application
Ken Kundert

Cadence Design Systems, San Jose, California, USA
Abstract —Radio-frequency (RF) circuits exhibit several distin-
guishing characteristics that make them difficult to simulate
using traditional SPICE transient analysis. The various exten-
sions to the harmonic balance and shooting method simulation
algorithms are able to exploit these characteristics to provide
rapid and accurate simulation for these circuits.

This paper is an introduction to RF simulation methods and how
they are applied to make common RF measurements. It
describes the unique characteristics of RF circuits, the methods
developed to simulate these circuits, and the application of these
methods.

Index Terms —Circuit simulation, SPICE, harmonic balance,
shooting methods, quasiperiodic methods, envelope methods,
cyclostationary noise, jitter, intermodulation distortion, inter-
channel interference, mixers, mixer noise, nonlinear oscillators,
phase noise.

I. THE RF INTERFACE

Wireless transmitters and receivers can be conceptually sepa-
rated into baseband and RF sections. Baseband is the range of
frequencies over which transmitters take their input and
receivers produce their output. The width of the baseband
determines the underlying rate at which data can flow through
the system. There is a considerable amount of signal process-
ing that occurs at baseband designed to improve the fidelity
of the data stream being communicated and to reduce the load
the transmitter places on the transmission medium for a par-
ticular data rate. The RF section of the transmitter is responsi-
ble for converting the processed baseband signal up to the
assigned channel and injecting the signal into the medium.
Conversely, the RF section of the receiver is responsible for
taking the signal from the medium and converting it back
down to baseband.

With transmitters there are two primary design goals. First,
they must transmit a specified amount of power while con-
suming as little power as possible. Second, they must not
interfere with transceivers operating on adjacent channels.
For receivers, there are three primary design goals. First, they
must faithfully recover small signals. They must reject inter-

ference outside the desired channel. And, like transmitte
they must be frugal power consumers.

A.  Small Desired Signals

Receivers must be very sensitive to detect small input signa
Typically, receivers are expected to operate with as little as
µV at the input. The sensitivity of a receiver is limited by th
noise generated in the input circuitry of the receiver. Thu
noise is a important concern in receivers and the ability
predict noise by simulation is very important. As shown i
Figure 1, a typical superheterodyne receiver first filters a
then amplifies its input with a low noise amplifier or LNA. It
then translates the signal to the intermediate frequency or
by mixing it with the first local oscillator or LO. The noise
performance of the front-end is determined mainly by th
LNA, the mixer, and the LO. While it is possible to use trad
tional SPICE noise analysis to find the noise of the LNA, it is
useless on the mixer and the LO because the noise in th
blocks is strongly influenced by the large LO signal.

The small input signal level requires that receivers must
capable of a tremendous amount of amplification. Often
much as 120 dB of gain is needed. With such high gain, a
coupling from the output back to the input can cause pro
lems. One important reason why the superheterodyne rece
architecture is used is to spread that gain over several f
quencies to reduce the chance of coupling. It also results
the first LO being at a different frequency than the inpu
which prevents this large signal from contaminating the sm
input signal. For various reasons, the direct conversion
homodyne architecture is a candidate to replace the super
erodyne architecture in some wireless communication s
tems [1,16,44,45]. In this architecture the RF input signal
directly converted to baseband in one step. Thus, most of
gain will be at baseband and the LO will be at the same fr
quency as the input signal. In this case, the ability to dete
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Fig. 1.  A coherent superheterodyne receiver’s RF interface.
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mine the impact of small amounts of coupling is quite
important and will require careful modeling of the stray sig-
nal paths, such as coupling through the substrate, between
package pins and bondwires, and through the supply lines.

B.  Large Interfering Signals

Receivers must be sensitive to small signals even in the pres-
ence of large interfering signals, often known as blockers.
This situation arises when trying to receive a weak or distant
transmitter with a strong nearby transmitter broadcasting in
an adjacent channel. The interfering signal can be 60-70 dB
larger than the desired signal and can act to block its recep-
tion by overloading the input stages of the receiver or by
increasing the amount of noise generated in the input stage.
Both of these problems result if the input stage is driven into a
nonlinear region by the interferer. To avoid these problems,
the front-end of a receiver must be very linear. Thus, linearity
is also an important concern in receivers. Receivers are nar-
rowband circuits and so the nonlinearity is quantified by mea-
suring the intermodulation distortion. This involves driving
the input with two sinusoids that are in band and close to each
other in frequency and then measuring the intermodulation
products. This is generally an expensive simulation with
SPICE because many cycles must be computed in order to
have the frequency resolution necessary to see the distortion
products.

C.  Adjacent Channel Interference

Distortion also plays an important role in the transmitter
where nonlinearity in the output stages can cause the band-
width of the transmitted signal to spread out into adjacent
channels. This is referred to as spectral regrowth because, as
shown in Figures 2 and 3, the bandwidth of the signal is lim-

ited before it reaches the transmitter’s power amplifier or PA,
and intermodulation distortion in the PA causes the band-
width to increase again. If it increases too much, the transmit-
ter will not meet its adjacent channel power requirements.
When transmitting digitally modulated signals, spectral
regrowth is virtually impossible to predict with SPICE. The
transmission of around 1000 digital symbols must be simu-
lated to get a representative spectrum, and this combined with
the high carrier frequency makes use of transient analysis
impractical.

II. CHARACTERISTICS OFRF CIRCUITS

RF circuits have several unique characteristics that are ba
ers to the application of traditional circuit simulation tech
niques. Over the last decade, researchers have develo
many special purpose algorithms that overcome these barr
to provide practical simulation for RF circuits, often by
exploiting the very characteristic that represented the barr
to traditional methods [28].

A.  Narrowband Signals

RF circuits process narrowband signals in the form of mod
lated carriers. Modulated carriers are characterized as hav
a periodic high-frequency carrier signal and a low-frequen
modulation signal that acts on either the amplitude, phase
frequency of the carrier. For example, a typical cellular tel
phone transmission has a 10-30 kHz modulation bandwid
riding on a 1-2 GHz carrier. In general, the modulation
arbitrary, though it is common to use a sinusoid or a simp
combination of sinusoids as test signals.

The ratio between the lowest frequency present in the mo
lation and the frequency of the carrier is a measure of the r
ative frequency resolution required of the simulation. Gene
purpose circuit simulators, such as SPICE, use transient analy-
sis to predict the nonlinear behavior of a circuit. Transie
analysis is expensive when it is necessary to resolve l
modulation frequencies in the presence of a high carrier f
quency because the high-frequency carrier forces a sm
timestep while a low-frequency modulation forces a lon
simulation interval.

Passing a narrowband signal though a nonlinear circuit res
in a broadband signal whose spectrum is relatively sparse
shown in Figure 3. In general, this spectrum consists of clu

ters of frequencies near the harmonics of the carrier. The
clusters take the form of a discrete set of frequencies if t
modulation is periodic or quasiperiodic, and a continuous d
tribution of frequencies otherwise.

Fig. 2.  A digital direct conversion transmitter’s RF interface.
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nonlinear circuit. The nonlinearity causes the signal to be replica
at multiples of the carrier, an effect referred to as harmon
distortion, and adds a skirt to the signal that increases its bandwid
an effect referred to as intermodulation distortion. It is possible
eliminate the effect of harmonic distortion with a bandpass filte
however the frequency of the intermodulation distortion produc
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completely removed with filtering.
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RF simulators exploit the sparse nature of this spectrum in
various ways and with varying degrees of success. Steady-
state methods (Section IV-A) are used when the spectrum is
discrete, and transient methods (Section IV-C) are used when
the spectrum is continuous.

B.  Time-Varying Linear Nature of the RF Signal Path

Another important but less appreciated aspect of RF circuits
is that they are generally designed to be as linear as possible
from input to output to prevent distortion of the modulation or
information signal. Some circuits, such as mixers, are
designed to translate signals from one frequency to another.
To do so, they are driven by an additional signal, the LO, a
large periodic signal the frequency of which equals the
amount of frequency translation desired. For best perfor-
mance, mixers are designed to respond in a strongly nonlinear
fashion to the LO. Thus, mixers behave both near-linearly (to
the input) and strongly nonlinearly (to the LO).

A timing or clock signal, such as the LO, is independent of
the information signal, and so may be considered to be part of
the circuit rather than an input to the circuit as shown in Fig-
ure 4. This simple change of perspective allows the mixer to

be treated as having a single input and a near-linear, though
periodically time-varying, transfer function. As an example,
consider a mixer made from an ideal multiplier and followed
by a low-pass filter. A multiplier is nonlinear and has two
inputs. Applying an LO signal of consumes one
input and results in a transfer function of

, (1)

which is clearly time-varying and is easily shown to be linear
with respect tovin. If the input signal is

, (2)

then
(3)

and
. (4)

This demonstrates that a linear periodically-varying transf
function implements frequency translation.

Often we can assume that the information signal is sm
enough to allow the use of a linear approximation of the c
cuit from its input to its output. Thus, a small-signal analys
can be performed, as long as it accounts for the periodical
varying nature of the signal path, which is done by linearizin
about the periodic operating point. This is the idea behind t
small-signal analyses of Section IV-B. Traditional simulato
such as SPICE provide several small-signal analyses, such
the AC and noise analyses, that are considered essential w
analyzing amplifiers and filters. However, they start by lin
earizing a nonlinear time-invariant circuit about a consta
operating point, and so generate a linear time-invariant rep
sentation that cannot exhibit frequency translation. Linear
ing a nonlinear circuit about a periodically-varying operatin
point extends small-signal analysis to clocked circuits, or c
cuits that must have a periodic clock signal present to oper
properly, such as mixers, switched filters, samplers, and os
lators (oscillators are self-clocked, so the clock signal is t
desired output of the oscillator and the information signal
generally an undesired signal, such as the noise). In doing
a periodically-varying linear representation results, whic
does exhibit frequency translation.

All of the traditional small-signal analyses can be extended
this manner, enabling a wide variety of applications (some
which are described in [59]). In particular, a noise analys
that accounts for noise folding and cyclostationary noi
sources can be implemented [40,52], which fills a critical
important need for RF circuits. When applied to oscillators,
also accounts for oscillator phase noise [8,9,21,22].

C.  Linear Passive Components

At the high frequencies present in RF circuits, the passi
components, such as transmission lines, spiral inducto
packages (including bond wires) and substrates, often pla
significant role in the behavior of the circuit. The nature o
such components often make them difficult to include in th
simulation.

Generally the passive components are linear and are mod
with phasors in the frequency-domain, using either analytic
expressions or tables of S-parameters. This greatly simplif
the modeling of distributed components such as transmiss
lines. Large distributed structures, such as packages, spir
and substrates, often interface with the rest of the circ
through a small number of ports. Thus, they can be eas
replaced by aN-port macromodel that consists of theN2

transfer functions. These transfer functions are found
reducing the large systems of equations that describe th
structures using Gaussian elimination, leaving only the equ
tions that relate the signals at their ports. The relative
expensive reduction step is done once for each frequency
preprocessing step. The resulting model is one that is effici
to evaluate in a frequency-domain simulator ifN is small.
This is usually true for transmission lines and spirals, and le
true for packages and substrates.

Fig. 4. One can often approximate a nonlinear periodically-driven or
clocked circuit (above) with a linear periodically-varying circuit
(below).
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Time-domain simulators are formulated to solve sets of first-
order ordinary-differential equations (ODE). However, dis-
tributed components, such as transmission lines, are
described with partial-differential equations (PDE) and are
problematic for time-domain simulators. Generally, the PDEs
are converted to a set of ODEs using some form of discretiza-
tion [6,35]. Such approaches suffer from bandwidth limits. A
alternative approach is to compute the impulse response for a
distributed component from a frequency domain description
and use convolution to determine the response of the compo-
nent in the circuit [20,54,56]. Evaluating lossy or dispersive
transmission line models or tables of S-parameters with this
approach is generally expensive and error-prone. Packages,
substrates and spirals can be modeled with large lumped net-
works, but such systems can be too large to be efficiently
incorporated into a time domain simulation, and so some
form of reduction is necessary [11,42].

D.  Semiconductor Models

The semiconductor models used by RF simuators must accu-
rately model the high-frequency small-signal behavior of the
devices to accurately perdict the behavior of RF circuits. BJTs
have long been used in high-frequency analog circuits and
their models are well suited for RF circuits. With the advent
of submicron technologies, RF circuits are now being realized
in standard CMOS processes [1,16], however existing MOS
models are inadequate for RF applications. In particular, the
distributed resistance in the gate and substrate are not well
modeled, which affects the driving point immitances, the
transfer functions, and perhaps most important, the noise
[19]. In addition, flicker noise is not well modeled, which
plays a large roll in oscillator phase noise, and is particularly
important for CMOS oscillators because of the large amount
of flicker noise produced by MOS devices [32].

III. B ASIC RF BUILDING BLOCKS

RF systems are constructed primarily using four basic build-
ing blocks — amplifiers, filters, mixers, and oscillators.
Amplifiers and filters are common analog blocks and are well
handled by SPICE. However, mixers and oscillators are not
heavily used in analog circuits and SPICEhas limited ability to
analyze them. What makes these blocks unique is presented
next.

A.  Mixers

Mixers translate signals from one frequency range to another.
They have two inputs and one output. One input is for the
information signal and the other is for the clock signal, the
LO. Ideally, the signal at the output is the same as that at the
information signal input, except shifted in frequency by an
amount equal to the frequency of the LO. As shown in Sec-
tion II-B, a multiplier can act as a mixer. In fact, a multiplier
is a reasonable model for a mixer except that the LO is passed
through a limiter, which is usually an integral part of the
mixer, to make the output less sensitive to noise on the LO.

The input and output signals of a mixer used for up-conver-

shown after passing through the limiter so that the output
the time-domain is simply the product of the inputs, or th
convolution of the two inputs in the frequency domain. Th
information signal, here a modulation signal, is replicated
the output above and below each harmonic of the LO. The
bands of signal above and below each harmonic are refer
to assidebands.There are two sidebands associated with ea
harmonic of the LO. The ones immediately above the ha
monics are referred to as theupper sidebandsand the ones
below are referred to as thelower sidebands. The sideband at
DC is referred to as thebaseband.

When the LO has a rich harmonic content, an input signal
any sideband will be replicated to each of the sidebands at
output. Usually, only one sideband is of interest and the o
ers must be eliminated. If the desired sideband is the ba
band, then the undesired sidebands are eliminated wit
lowpass filter. Otherwise the undesired sidebands a
removed with a bandpass filter. This works well for sideban
of harmonics different from that of the desired sideban
However, special techniques are then required to elimina
the remaining undesired sideband [44].

Consider a down-conversion mixer (as in a receiver) a
assume the mixer is followed by a filter. This filter is used t
remove all but the desired channel. The output of the mix
filter pair is sensitive to signals in each sideband of the LO
Associated with each sideband is a transfer function from th
sideband to the output. The shape of the transfer function
determined largely by the filter. Thus, the bandwidth of th
passband is that of the filter. If the filter is a bandpass, th
the passband of the transfer function will be offset from th
LO or its harmonic by the center frequency of the filter. The
passbands are referred to as theimagesof the filter and are
shown in Figure 6. Generally only one image is desired, t
rest are undesired. The most troubling is usually the one t
shares the same harmonic as the desired image. Image-re

Fig. 5. Signals at the inputs and outputs of an up-conversion mix
The modulation signal is mixed up to the upper and lower sideban
of the LO and its harmonics.

f

f
fm

f
fLO 2fLO 3fLO

Modulation Input

LO Input

Output



KUNDERT: INTRODUCTION TORF SIMULATION AND ITS APPLICATION 1302

r-
ys
t,
de

the
p-
in-

he
s
e
up-

on
ted
er
n.
via-
ar
—
ing
lla-
if
is

a-
ia-
se
the

nd

the

a
re
iers,

of
In
de
by
o

mixers are designed to reduce the gain associated with this
undesired image [44].

Sidebands and images are related, but are not the same. Side-
bands are frequency bands in the signal actually produced at
the output of a mixer, whereas images are frequency bands at
the input of a mixer that have the potential to produce a
response at the output.

B.  Oscillators

Oscillators generate a reference signal at a particular fre-
quency. In some oscillators, referred to as VCOs for voltage
controlled oscillators, the frequency of the output varies pro-
portionally to some input signal. Compared to mixers, oscilla-
tors seem quite simple. That is an illusion.

Oscillators are generally used in RF circuits to generate the
LO signal for mixers. The noise performance of the mixer is
strongly affected by noise on the LO signal. The LO is always
passed through a limiter, which is generally built into the
mixer, to make the mixer less sensitive to small variations in
the amplitude of the LO. However, the mixer is still sensitive
to variations in the phase of the LO. Thus, it is important to
minimize the phase noise produced by the oscillator.

Nonlinear oscillators naturally produce high levels of phase
noise. To see why, consider the trajectory of an oscillator’s
stable periodic orbit in state space. Furthermore, consider dis-
turbing the oscillator by applying an impulseu(t) = δ(t). The
oscillator responds by following a perturbed trajectoryx(t) +
∆x(t) as shown in Figure 7, wherex(t) represents the unper-
turbed solution and∆x(t) is the perturbation in the response.

Decompose the perturbed response into amplitude and phase
variations.

(5)

wherev(t) represents the noisy output voltage of the oscilla-
tor, α(t) represents the variation in amplitude,φ(t) is the vari-
ation in phase, andfc is the oscillation frequency.

Since the oscillator is stable and the duration of the distu
bance is finite, the deviation in amplitude eventually deca
away and the oscillator returns to its stable orbit. In effec
there is a restoring force that tends to act against amplitu
noise. This restoring force is a natural consequence of
nonlinear nature of the oscillator and at least partially su
presses amplitude variations, as shown in Figure 8. With l

ear oscillators, there is no restoring force and so t
amplitude is arbitrary (i.e., they do not have stable orbits). A
such, linear oscillators exhibit equal amounts of amplitud
and phase noise because the amplitude noise is not s
pressed.

Since the oscillator is autonomous, any time-shifted versi
of the solution is also a solution. Once the phase has shif
due to a perturbation, the oscillator continues on as if nev
disturbed except for the shift in the phase of the oscillatio
There is no restoring force on the phase and so phase de
tions accumulate. This is true for both linear an nonline
oscillators. Notice that there is only one degree of freedom
the phase of the oscillator as a whole. There is no restor
force when the phase of all signals associated with the osci
tor shift together, however there would be a restoring force
the phase of signals shifted relative to each other. This
important in oscillators with multiple outputs, such as quadr
ture oscillators or ring oscillators. The dominant phase var
tions appear identically in all outputs, whereas relative pha
variations between the outputs are naturally suppressed by

Fig. 6. Images at the input of the first mixing stage of a typical
receiver. The images are frequency bands where the output is
sensitive to signals at the input.
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Fig. 7. The trajectory of an oscillator shown in state space with a
without a perturbation∆x. By observing the time stamps (t0,..., t6)
one can see that the deviation in amplitude dissipates while
deviation in phase does not.

Fig. 8. A linear oscillator along with its response to noise (left) and
nonlinear oscillator with its response to noise (right). The arrows a
phasors that represents the unperturbed oscillator output, the carr
and the circles represent the response to perturbations in the form
noise. With a linear oscillator the noise simply adds to the carrier.
a nonlinear oscillator, the nonlinearities act to control the amplitu
of the oscillator and so to suppress variations in amplitude, there
radially compressing the noise ball and converting it int
predominantly a variation in phase.
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oscillator or added by subsequent circuitry and so tend to be
much smaller [8].

After being disturbed by an impulse, the asymptotic response
of the amplitude deviation isα(t) → 0 ast → ∞. However, the
asymptotic response of the phase deviation isφ(t) → ∆φ. If
responses that decay away are neglected then the impulse
response of the phase deviationφ(t) can be approximated with
a unit steps(t). Thus, the phase shift over time for an arbitrary
input disturbanceu is

(6)

or the power spectral density (PSD) of the phase is

. (7)

The disturbanceu may be either deterministic or random in
character and may result from extraneous signals coupling
into the oscillator or from variations in the components that
make up the oscillator, such as thermal, shot, and flicker
noise.

If Su(f) is white noise, thenSφ(f) is proportional to 1/(2πf)2.
This result has been shown here to apply at low frequencies,
but with a more detailed derivation it can also be shown to be
true over a broad range of frequencies [21]. Assumeu is
white and definea such that

(8)

wherefc = 1/T is the oscillation or carrier frequency.Sφ is the
PSD of the phase variable in (5). Phase cannot easily be
observed directly, so instead one is often interested inSv, the
PSD ofv. Near the fundamental [9,21,23,57]

, (9)

wherefm is the frequency offset from the fundamental andX1
is the first Fourier coefficient forx,

. (10)

This spectrum is a Lorentzian as shown in Figure 9. The cor-
ner frequencyf∆ is known as the linewidth of the oscillator
and is given byf∆ = aπfc

2, with

. (11)

As t → ∞ the phase of the oscillator drifts without bound, and
soSφ(fm) → ∞ asfm → 0. However, even as the phase drifts
without bound, the excursion in the voltage is limited by the
diameter of the limit cycle of the oscillator (represented by
the periodic functionx in (5)). Therefore, asfm → 0 the PSD
of v flattens out andSv(fc + fm) → |X1|2/(πf∆), which is

inversely proportional toa. Thus, the largera, the more phase
noise, the broader the linewidth, and the lower signal amp
tude within the linewidth. This happens because the pha
noise does not affect the total power in the signal, it on
affects its distribution. Without phase noise,Sv(f) is a series of
impulse functions at the harmonics offc. With phase noise,
the impulse functions spread, becoming fatter and shorter
retaining the same total power [9].

It is more common to report oscillator phase noise asL, the
ratio of the single-sideband (SSB) phase noise power to
power in the fundamental (in dBc/Hz)

. (12)

At frequencies where the oscillator phase noise domina
over the amplitude noise, and that are also outside the li
width (fm > f∆), the phase noise is approximated with†

. (13)

The roll-off in Sv(fc + fm) andL(fm) asfm → 0 is a result of
the circuit responding in a nonlinear fashion to the nois
itself. As such, it cannot be anticipated by the small-sign
noise analyses that will be presented in Section IV-B. How
ever, as can be seen from Figure 9,Sφ does not roll-off at low
frequencies, so these analyses along with (13) can be use
computeSφ at low frequencies.

Phase noise acts to vary the period of the oscillation, a p
nomenon known as jitter. Assume thatu is a white stationary
process. Then its variance is constant and from (6) the va
ance ofφ increases linearly with time. Demir [9] shows tha
the variance of a single period isaT where a is defined in (8)
andT = 1/fc. The jitterJk is the standard deviation of the
length ofk periods, and so

. (14)

φ t( ) s t τ–( )u τ( ) τd

∞–

∞
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Fig. 9. Two different ways of characterizing noise in the sam
oscillator.Sφ is the spectral density of the phase andSv is the spectral
density of the voltage.Sv contains both amplitude and phase nois
components, but with oscillators the phase noise dominates exce
frequencies far from the carrier and its harmonics.Sv is directly
observable on a spectrum analyzer, whereasSφ is only observable if
the signal is first passed through a phase detector. Another mea
of oscillator noise isL, which is simplySv normalized to the power
in the fundamental.

† Other references report thatL(fm) = Sφ(fm)/2, which is true when
Sφ is the single-sided PSD [50,63]. Here,Sφ is the doubled-sided
PSD.

lo
g 
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lo
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log fmlog fm
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--------------------= =
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In the case whereu represents flicker noise,Su( f ) is gener-
ally pink or proportional to 1/f. ThenSφ( f ) would be propor-
tional to 1/f 3 at low frequencies [22]. In this case, there are no
explicit formulas forf∆ andJk or Sv andL at low offset fre-
quencies.

IV. RF ANALYSES

SPICE provides several different types of analyses that have
proven themselves essential to designers of baseband circuits.
These same analyses are also needed by RF designers, except
they must extended to address the issues described in Section
II and the circuits of Section III. The basic SPICE analyses
include DC, AC, noise, and transient. RF versions of each
have been developed in recent years based on two different
foundations, harmonic balance and shooting methods. Both
harmonic balance and shooting methods started off as meth-
ods for computing the periodic steady-state solution of a cir-
cuit, but have been generalized to provide all the functionality
needed by RF designers. In their original forms they were
limited to relatively small circuits. Recently, Krylov subspace
methods have been applied to accelerate both harmonic bal-
ance and the shooting methods, which allows them to be
applied to much larger circuits [13,30,33,58,60,61].

A.  Periodic and Quasiperiodic Analysis

Periodic and quasiperiodic analyses can be thought of as RF
extensions of SPICE’s DC analysis. In DC analysis one applies
constant signals to the circuit and it computes the steady-state
solution, which is the DC operating point about which subse-
quent small-signal analyses are performed. Sometimes, the
level of one of the input signals is swept over a range and the
DC analysis is used to determine the large-signal DC transfer
curves of the circuit.

With periodic and quasiperiodic analyses, the circuit is driven
with one or more periodic waveforms and the steady-state
response is computed. This solution point is used as a peri-
odic or quasiperiodic operating point for subsequent small-
signal analyses. In addition, the level of one of the input sig-
nals may be swept over a range to determine the power trans-
fer curves of the circuit.

Periodic and quasiperiodic analyses are generally used to pre-
dict the distortion of RF circuits and to compute the operating
point about which small-signal analyses are performed (pre-
sented later). When applied to oscillators, periodic analysis is
used to predict the operating frequency and power, and can
also be used to determine how changes in the load affect these
characteristics (load pull).

Quasiperiodic steady-state (QPSS) analyses compute the
steady-state response of a circuit driven by one or more large
periodic signals. The steady-state or eventual response is the
one that results after any transient effects have dissipated.
Such circuits respond in steady-state with signals that have a
discrete spectrum with frequency components at the drive fre-
quencies, at their harmonics, and at the sum and difference
frequencies of the drive frequencies and their harmonics.

Such signals are called quasiperiodic and can be represe
with a generalized Fourier series

(15)

whereVkl are Fourier coefficients andf1 andf2 are fundamen-
tal frequencies. For simplicity, a 2-fundamental quasiperiod
waveform is shown in (15), though quasiperiodic signals c
have any finite number of fundamental frequencies. If there
only one fundamental, the waveform is simply periodic.f1
andf2 are assumed to be noncommensurate, which means
there exists no frequencyf0 such that bothf1 andf2 are exact
integer multiples off0. If f1 andf2 are commensurate, thenv(t)
is simply periodic.

The choice of the fundamental frequencies is not uniqu
Consider a down-conversion mixer that is driven with tw
periodic signals atfRF andfLO, with the desired output atfIF =
fRF – fLO. The circuit responds with a 2-fundamental quasip
riodic steady-state response where the fundamental frequ
cies can befRF andfLO, fLO andfIF, or fIF andfRF. Typically,
the drive frequencies are taken to be the fundamentals, wh
in this case arefRF andfLO, With an up-conversion mixer the
fundamentals would likely be chosen to befIF andfLO.

As discussed in Section II-A, computing signals that have t
form of (15) with traditional transient analysis would be ver
expensive iff1 and f2 are widely spaced so that min(f1, f2)/
max(f1, f2) « 1 or if they are closely spaced so that |f1 – f2|/
max(f1, f2) « 1. Large-signal steady-state analyses direc
compute the quasiperiodic solution without having to sim
late through long time constants or long beat tones (the b
tone is the lowest frequency present excluding DC). T
methods generally work by directly computing the Fourie
coefficients,Vkl. To make the computation tractable, it is nec
essary for all but a small number of Fourier coefficients to
negligible. These coefficients would be ignored. General
we can assume that all but the firstKi harmonics and associ-
ated cross terms of each fundamentali are negligible. With
this assumption,K = Πi(2Ki+1) coefficients remain to be cal-
culated, which is still a large number if the number of funda
mentals is large. In practice, these methods are typica
limited to a maximum of 3 or 4 fundamental frequencies.

1) Harmonic Balance:Harmonic balance [27,30,36,47] for-
mulates the circuit equations and their solution in the fr
quency domain. The solution is written as a Fourier series t
cannot represent transient behavior, and so harmonic bala
directly finds the steady-state solution. Consider

. (16)

This equation is capable of modeling any lumped time-inva
ant nonlinear system, however it is convenient to think of it
being generated from nodal analysis, and so representin
statement of Kirchhoff’s Current Law for a circuit containing
nonlinear conductors, nonlinear capacitors, and curre
sources. In this case,v(t) ∈ RN is the vector of node voltages,
i(v(t)) ∈ RN represents the current out of the node from th

v t( ) Vkle
j2π k f 1 l f 2+( )t

l ∞–=

∞

∑
k ∞–=

∞

∑=

f v t( ) t,( ) i v t( )( ) dq v t( )( )
dt

--------------------- u t( )+ + 0= =
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conductors,q(v(t)) represents the charge out of the node from
the capacitors, andu(t) represents the current out of the node
from the sources. To formulate the harmonic balance equa-
tions, assume thatv(t) andu(t) areT-periodic and reformulate
the terms of (16) as a Fourier series.

, (17)

wheref = 1/T is the fundamental frequency, and
. (18)

Since and are linearly independent over a
periodT if k ≠ l thenFk(V) = 0 for eachk individually and so
(17) can be reformulated as a system of equations, one for
each harmonick. To make the problem numerically tractable,
it is necessary to consider only the firstK harmonics. The
result is a set ofK complex equations (Fk(V) = 0) andK com-
plex unknowns (Vk) that are typically solved using Newton’s
method [27].

It is in general impossible to directly formulate models for
nonlinear components in the frequency domain. To overcome
this problem, nonlinear components are usually evaluated in
the time domain. Thus, the frequency domain voltage is con-
verted into the time domain using the inverse Fourier trans-
form, the nonlinear component (i andq) is evaluated in the
time domain, and the current or charge is converted back into
the frequency domain using the Fourier transform.

2) Autonomous Harmonic Balance:An extremely important
application of harmonic balance is determining the steady-
state behavior of oscillators. However, as presented, harmonic
balance is not suitable for autonomous circuits such as oscil-
lators. The method was derived assuming the circuit was
driven, which made it possible to know the operating fre-
quency in advance. Instead, it is necessary to modify har-
monic balance to directly compute the operating frequency by
adding the oscillation frequency to the list of unknowns and
adding an additional equation that constrains the phase of the
computed solution [27].

3) Quasiperiodic Harmonic Balance:A two fundamental
quasiperiodic signal takes the form

, (19)

wheref1 andf2 are the fundamental frequencies. Rearranging
(19) shows this to be equivalent to constructing the waveform
as a conventional Fourier series where the frequency of each
term is an integer multiple off1, except that the Fourier coef-
ficients themselves are time-varying. In particular, the coeffi-
cient is periodic with periodT2 = 1/f2 and can itself be
represented as a Fourier series.

(20)

Define , such that with
beingT1 periodic int1 andT2 periodic int2. In this way a two-
dimensional version ofx is created where temporal dimen
sions are associated with the time scales of each of the fun
mental frequencies. Then

. (21)

This is a two-dimensional Fourier series, and so andX are
related by a two-dimensional Fourier transform.

Using these ideas, we can reformulate (16) in terms oft1 and
t2

(22)

or
. (23)

Assuming  andf of (23) take the form of (21) results in

, (24)

where
(25)

The terms in (24) are linearly independent over allt assuming
that f1 and f2 are noncommensurate (share no commo
period). SoFkl(V) = 0 for eachk, l . This becomes finite-
dimensional by boundingk < K andl < L. When evaluatingI
andQ the multidimensional discrete Fourier transform i
used.

Using a multidimensional Fourier transform is just one wa
of formulating harmonic balance for quasiperiodic problem
[49,66]. It is used here because of its simple derivation a
because it introduces ideas that will be used later in Sect
IV-C. An alternate approach that is generally preferred
practice is the false frequency method, which is based o
one-dimensional Fourier transform [18,27].

4) Shooting Methods:Traditional SPICE transient analysis
solves initial-value problems. A shooting method is an iter
tive procedure layered on top of transient analysis that
designed to solve boundary-value problems. Boundary-va
problems play an important role in RF simulation. For exam
ple, assume that (16) is driven with a non-constantT-periodic
stimulus. TheT-periodic steady state solution is the one th
also satisfies the two-point boundary constraint,

. (26)

Fk V( )ej2πkf t

k ∞–=

∞

∑ 0=

Fk V( ) j2πkf Qk V( ) I k V( ) Uk+ +=

ej2πkft ej2π l ft

x t( ) Xkle
j2π k f 1 l f 2+( )t

l ∞–=

∞

∑
k ∞–=

∞

∑=

X̃k t( )

x t( ) Xkle
j2π l f 2t

l ∞–=

∞

∑ ej2πk f 1t

k ∞–=

∞

∑=

X̃k t( )

      

x̂ t1 t2,( ) x t( ) x̂ t t,( )= x̂ t1 t2,( )

x̂ t1 t2,( ) Xkle
j2π l f 2t2ej2πk f 1t1

l ∞–=

∞

∑
k ∞–=

∞

∑=

x̂

∂q v̂ t1 t2,( )( )
∂t1

-------------------------------
∂q v̂ t1 t2,( )( )

∂t2
------------------------------- i v̂ t1 t2,( )( ) û t1 t2,( )+ + + 0=

f v̂ t1 t2,( ) t1 t2, ,( ) 0=

v̂

Fkl V( )ej2π k f 1t1 l f 2t2+( )

l ∞–=

∞

∑
k ∞–=

∞

∑ 0=

Fkl V( ) j2π k f 1 l f 2+( )Qkl V( ) I kl V( ) Ukl+ +=

v T( ) v 0( )– 0=
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Define the state transition functionφT(v0, t0) as the solution to
(16) att0 + T given that it starts at the initial statev0 at t0. In
general, one writes

. (27)

Shooting methods combine (26) and (27) into
, (28)

which is a nonlinear algebraic problem and so Newton meth-
ods can be used to solve forv(0). The combination of the
Newton and shooting methods are referred to as the shooting-
Newton algorithm.

When applying Newton's method to (28), it is necessary to
compute both the response of the circuit over one period and
the sensitivity of the final statev(T) with respect to changes in
the initial statev(0). The sensitivity is used to determine how
to correct the initial state to reduce the difference between the
initial and final state [2,58].

5) Autonomous Shooting Methods:As with harmonic bal-
ance, it is extremely important to be able to determine the
steady-state behavior of oscillators. To do so it is necessary to
modify shooting methods to directly compute the period of
the oscillator. To do so, the period is added as an extra
unknown and an additional equation is added that constrains
the phase of the computed solution [27].

6) Quasiperiodic Shooting Methods:As shown in (20), a 2-
fundamental quasiperiodic signal can be interpreted as a peri-
odically modulated periodic signal. Designate the high fre-
quency signal as thecarrier and the low frequency signal as
the modulation. If the carrier is much higher in frequency
than the modulation, then the carrier will appear to vary only
slightly from cycle to cycle. In this case, the complete wave-
form can be inferred from knowledge of a small number of
cycles of the carrier appropriately distributed over one period
of the modulation. The number of cycles needed can be deter-
mined from the bandwidth of the modulation signal. If the
modulation signal can be represented usingK harmonics, then
the entire quasiperiodic signal can be recovered by knowing
the waveform over 2K + 1 cycles of the carrier that are evenly
distributed over the period of the modulation. This is the basic
idea behind the Mixed Frequency-Time or MFT method
[13,26,27].

Consider a circuit driven by two periodic signals that
responds in steady-state by producing 2-fundamental quasip-
eriodic waveforms as in (15). Designate the fundamental fre-
quencies asf1 andf2 and consider the case wheref1 » f2.

‡ This
may be because one input is a high frequency signal and the
other is a low frequency signal, as would be the case with an
up-conversion mixer. Or it may be that both inputs are high
frequency signals, but that their frequencies are close to each
other and so they generate a low beat frequency, as with a

down-conversion mixer. Designatef1 as the carrier frequency
andf2 as the modulation frequency. Thenv(t) is the quasiperi-
odic response, where

. (29)

Consider sampling the signalv(t) at the carrier frequency. The
sampled signal is referred to as the sample envelope an
related to the continuous signal by , whereT1 =
1/f1. represents a sampled and perhaps scaled versio
the modulation signal.

The MFT method works by computing the discrete sequen
instead of the continuous waveformv. Notice that if every
 is related to the subsequent sample point  by

, (30)

then all the will satisfy the circuit equations. The trans
tion function in (30) can be computed by standard SPICEtran-
sient analysis and serves to translate between the continu
signal and the discrete representation. The key to the M
method is to require that the samples represent a samp
quasiperiodic signal. This requirement is easily enforc
because, as shown in Figure 10, sampling a 2-fundamen

quasiperiodic signal at the carrier frequency results in a sa
pled waveform that is 1-fundamental quasiperiodic, or simp
periodic, at the modulation frequency. In other words, th
sampled waveform can be written as a Fourier series with
carrier removed,

. (31)

Alternatively, one can write

, (32)

which states that is the inverse Fourier transform of
Consider thenth sample interval and let be the solu
tion at the start of the interval and be
the solution at the end. Then, (30) uses the circuit equation
relate the solution at both ends of the interval,

. (33)

Define Φ as the function that maps the sequencex to the
sequencey by repeated application of (33),

y = Φ(x). (34)

Let X = Fx andY= Fy (X andYare the Fourier transforms of
x andy). Then, from (31) and since ,

, (35)

‡ The MFT method does not require thatf1 » f2. However, if true,
using MFT gives significant performance advantages over traditional
transient analysis.

v t0 T+( ) φT v t0( ) t0,( )=

φT v 0( ) 0,( ) v 0( )=

Fig. 10. The sample envelope is the waveform that results fro
sampling a signal with a period equal to that of the carrier.

v t( ) Vkle
j2π k f 1 l f 2+( )t

l
∑

k
∑=

v̂n v nT1( )=
v̂n

v̂
v̂n v̂n 1+

v̂n 1+ φT1
v̂n nT1,( )=

v̂n

v̂n

Sample Envelope

v̂n v nT1( ) V̂kej2π ln f 2T1

l ∞–=

∞

∑= =

v̂ F 1– V̂=

v̂ V̂
xn v̂n=

yn v̂n 1+ xn 1+= =

yn φT1
xn nT1,( )=

yn xn 1+=

Xl e j– 2π l f 2T1Yl=
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, (36)

where is referred to as the delay matrix. It is a diagonal
matrix with being thelth diagonal element. Equa-
tion (36) is written in the time domain as

, (37)

Together, (34) and (37) make up the MFT method where (34)
stems solely from the circuit equations and (37) solely from
the requirement that represent a sampled quasiperiodic
waveform. They can be combined into

, (38)

or

. (39)

Equation (39) is a implicit nonlinear equation that can be
solved for  using Newton’s method.

In practice, the modulation signals in the circuit are band-lim-
ited, and so only a finite number of harmonics are needed.
Thus the envelope shown in Figure 10 can be completely
specified by only a few of the sample points . With onlyK
harmonics needed, (39) is solved over 2K+1 distinct intervals
using shooting methods. In particular, if the circuit is driven
with one large high frequency periodic signal atf1 and one
moderately sized sinusoid atf2, then the number of harmonics
needed,K, is small and the method is efficient. The total sim-
ulation time is proportional to the number of harmonics
needed to represent the sampled modulation waveform and is
independent of the period of the low-frequency beat tone or
the harmonics needed to represent the carrier.

B.  Small-Signal Analyses

The AC and noise analyses in SPICE are referred to as small-
signal analyses. They assume that a small signal is applied to
a circuit that is otherwise at its DC operating point. Since the
input signal is small, the response can be computed by linear-
izing the circuit about its DC operating point (apply a Taylor
series expansion about the DC equilibrium point and discard
all but the first-order term). Superposition holds, so the
response at each frequency can be computed independently.
Such analyses are useful for computing the characteristics of
circuits that are expected to respond in a near-linear fashion to
an input signal and that operate about a DC operating point.
This describes most “linear” amplifiers and continuous-time
filters.

The assumption that the circuit operates about a DC operating
point makes these analyses unsuitable for circuits that are
expected to respond in a near-linear fashion to an input signal
but that require some type of clock signal to operate. Mixers
fit this description, and if one considers noise to be the input,
oscillators also fit. However, there is a wide variety of other
circuits for which these assumptions also apply. Circuits such
as samplers and sample-and-holds, switched-capacitor and
switched-current filters, chopper-stabilized and parametric
amplifiers, frequency multipliers and dividers, and phase

detectors. These circuits, which are referred to as a group
clocked circuits, require the traditional small-signal analys
to be extended such that the circuit is linearized about a pe
odically-varying operating point. Such analyses are referr
to as linear periodically-varying or LPV analyses.

A great deal of useful information can be acquired by pe
forming a small-signal analysis about the time-varying ope
ating point of the circuit. LPV analyses start by performing
periodic analysis to compute the periodic operating point w
only the large clock signal applied (the LO, the clock, the ca
rier, etc.). The circuit is then linearized about this time-var
ing operating point (expand about the periodic equilibriu
point with a Taylor series and discard all but the first-orde
term) and the small information signal is applied. Th
response is calculated using linear time-varying analysis.

Consider a circuit whose input is the sum of two periodic si
nals,u(t) = uL(t) + us(t), whereuL(t) is an arbitrary periodic
waveform with periodTL andus(t) is a sinusoidal waveform
of frequencyfs whose amplitude is small. In this case,uL(t)
represents the large clock signal andus(t) represents the small
information signal.

Let vL(t) be the steady-state solution waveform whenus(t) is
zero. Then allowus(t) to be nonzero but small. We can con
sider the new solutionv(t) to be a perturbationvs(t) on vL(t),
as inv(t) = vL(t) + vs(t). The small-signal solutionvs(t) is
computed by linearizing the circuit aboutvL(t), applyingus(t),
and then finding the steady-state solution. Given that

(40)

the perturbation in steady-state response is given by

(41)

wherefL = 1/TL is the large signal fundamental frequenc
[39,61].Vsk represents the sideband for thekth harmonic of
VL. In this situation, shown in Figure 11, there is only on
sideband per harmonic becauseUs is a single frequency com-
plex exponential and the circuit has been linearized. This re
resentation has terms at negative frequencies. If these te
are mapped to positive frequencies, then the sidebands wik
< 0 become lower sidebands of the harmonics ofvL and those
with k > 0 become upper sidebands.

Vsk/Us is the transfer function for the input atfs to the output
at fs + kfL. Notice that with periodically-varying linear sys-
tems there are an infinite number of transfer function
between any particular input and output. Each represent
different frequency translation.

Versions of this type of small-signal analysis exists for bo
harmonic balance [17,24,31] and shooting method
[39,40,61].

There are two different ways of formulating a small-signa
analysis that computes transfer functions [59,61]. The first
akin to traditional AC analysis, and is referred to here as
“periodic AC” or PAC analysis. In this case, a small-signal
applied to a particular point in the circuit at a particular fre

X DT1
Y=

DT1
e j– 2π l f 2T1

x F 1– DT1
F y=

v̂

x F 1– DT1
F Φ x( )=

v̂ F 1– DT1
F Φ v̂( )=

v̂

v̂n

us t( ) Use
j2πf st=

vs t( ) Vskej2π f s k f L+( )t

k ∞–=

∞

∑=
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or
quency, and the response at all points in the circuit and at all
frequencies is computed. Thus, in one step one can compute
the transfer function from one input to any output. It is also
possible to do the reverse, compute the transfer functions
from any input to a single output in one step using an
‘adjoint’ analysis. This is referred to as a “periodic transfer
function” or PXF analysis. PAC is useful for predicting the
output sidebands produced by a particular input signal,
whereas PXF is best at predicting the input images for a par-
ticular output.

Small-signal analysis is also used to perform cyclostationary
noise analysis [8,40,52], which is an extremely important
capability for RF designers [59]. It is referred to as a “peri-
odic noise” or PNoise analysis, and is used to predict the
noise figure of mixers. PNoise analysis is also used to predict
the phase noise of oscillators, however this is a numerically
ill-conditioned problem that requires special techniques in
order to overcome the ill-conditioning and accurately com-
pute close-in phase noise [21,22].

LPV analyses provides significant advantages over trying to
get the same information from equivalent large signal analy-
ses. First, they can be much faster. Second, a wider variety of
analyses are available. For example, noise analysis is much
easier to implement as a small-signal analysis. Finally, they
can be more accurate if the small signals are very small rela-
tive to the large signals. Small signals applied in a large signal
analysis can be overwhelmed by errors that stem from the
large signals. In a small-signal analysis, the large and small
signals are applied in different phases of the analysis. Small
errors in the large signal phase typically have only a minor
effect on the linearization and hence the accuracy of the
small-signal results.

All of the small-signal analyses are extensible to the ca
where the operating point is quasiperiodic. This is importa
when predicting the effect of large interferers or blockers a
is discussed further in Section VI-C. Such analyses a
referred to as linear quasiperiodically-varying or LQPV ana
yses as a group, or individually as QPAC, QPXF, QPNois
etc.

C.  Transient-Envelope Analyses

Transient-envelope analyses are applied to simulate mo
lated carrier systems when the modulation waveform is som
thing other than a simple sinusoid or combination o
sinusoids. It does so by performing a series of linked larg
signal pseudo-periodic analyses, which are periodic analy
that have been modified to account for slow variations in th
envelope over the course of each period of the carrier a
result of the modulation. The pseudo-periodic analyses m
be performed often enough to follow the changes in the en
lope. In effect, transient-envelope methods wrap a conve
tional transient analysis algorithm around a modified versio
of a periodic analysis. Thus the time required for the analy
is roughly equal to the time for a single periodic analysis mu
tiplied by the number of time points needed to represent t
envelope. If the envelope changes slowly relative to th
period of the carrier, then transient-envelope simulation c
be very efficient relative to traditional transient analysis.

Transient-envelope methods have two primary applicatio
The first is predicting the response of a circuit when it
driven with a complicated digital modulation. An importan
problem is to determine the interchannel interference th
results from intermodulation distortion. Simple intermodula
tion tests involving a small number of sinusoids as can be p
formed with quasiperiodic analysis are not a good indicator
how the nonlinearity of the circuit couples digitally modu
lated signals between adjacent channels. Instead, one m
apply the digital modulation, simulate with transient-enve
lope methods, and then determine how the modulation sp
trum spreads into adjacent channels.

The second important application of transient-envelope me
ods is to predict the long term transient behavior of certain R
circuits. Examples include the turn-on behavior of oscillator
power supply droop or thermal transients in power amplifie
and the capture and lock behavior of phase-locked loo
Another important example is determining the turn-on an
turn-off behavior of TDMA transmitters. TDMA (time-divi-
sion multiple access) transmitters broadcast during a narr
slice of time. During that interval the transmitter must powe
up, stabilize, send the message, and then power down.
powers up and down too slowly, the transmitter does not wo
properly. If it powers up and down too quickly, the resultin
spectrum will be too wide to fit in the allotted channel. Simu
lating with traditional transient analysis would be prohib
tively expensive because the time slice lasts on the order
10-100 ms and the carrier frequency is typically at 1 GHz
greater.

Fig. 11. The steady-state response of a linear periodically-varying
system to a small complex exponential stimulus. The large signals
are represented with solid arrows and the small signals with hollow
arrows.

Output (mapped to
positive frequencies)

Input
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Output
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Output
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1) Fourier-Envelope Method:With the Fourier-envelope
method the envelope is represented by slowly-varying Fou-
rier coefficients. First developed by Sharrit and referred to as
circuit envelope [55], the Fourier-envelope method is a tran-
sient-envelope method based on harmonic balance. In the
Section IV-A, the concept of harmonic balance with time-
varying Fourier coefficients was introduced. In that case, the
Fourier coefficients were assumed to be periodic, with the
result that signals themselves were quasiperiodic. With the
Fourier-envelope method [12,38,48], the Fourier coefficients
in (20) are time varying, but are not necessarily periodic.
Instead, the Fourier coefficients are taken to be slowly
varying transient waveforms. Thus, signals take the form

, (42)

wheref is the fundamental frequency of the base Fourier
series. represents the complex modulation of thekth

harmonic. must vary slowly relative tof because if the
bandwidth of becomes greater thanf/2 then the sidebands
of adjacent harmonics begin to overlap and the representation
is not unique.

Now, rewrite (16) assumingv andf take the form of (42),

, (43)

where

(44)

Assume that the variations in are slow enough so that
the bandwidth of each term in (44) is much less thanf/2, then
the terms associated with each harmonick will sum to zero
individually. Then, for eachk, or in vector
form

(45)

whereΩ is a diagonal matrix withj2πkf on thekth diagonal.
As with transient analysis, discretization methods such as
trapezoidal rule or the backward difference formulae replace
dQ/dtwith a finite-difference approximation, converting (45)
to a system of nonlinear algebraic equations that is solved
with Newton’s method. For example, applying backward
Euler converts (45) to

(46)

and are evaluated atts by converting
into the time domain using the inverse Fourier trans-

form, passing the time-domain voltage waveform through
i( ⋅ ) andq( ⋅ ), and converting the resulting current and charge

waveforms back into the frequency domain using the forwa
Fourier transform. This procedure relies on the envelo
being essentially constant over the length of a cycle of t
carrier.

One of the important strengths of harmonic balance is its ab
ity to easily incorporate frequency-domain models for the li
ear components such as lossy or dispersive transmission li
Unfortunately, this is not true with the Fourier-envelop
method. The transient nature of the modulations intr
duces the same difficulties that are present with distribut
components in transient analysis, which are addressed us
similar techniques. In particular, one can use convolutio
[20,54], or the model for the distributed component can b
separated into delay and dispersion, with the dispersion be
replaced by a lumped approximation [56].

As the distributed components are linear, the sidebands
each harmonick can be treated individually. Thus, a separa
model is generated for each harmonick, which greatly
reduces the bandwidth requirements on the models. T
model for each harmonic must only be valid over the ban
width of the sidebands associated with that harmonic. In R
circuits, the bandwidths of the sidebands are usually sm
relative to the carrier frequency, and so generating models
distributed components for use in the Fourier-envelop
method is much easier than for conventional transient ana
sis. In fact, it is not uncommon for the bandwidth of an R
circuit to be so small that the transfer function of a distribute
component does not change appreciably over the bandwi
of the sidebands. In this case, the transfer function is taken
be constant.

2) Sample-Envelope Method:With the sample envelope
method the envelope is represented by slowly-varying sa
pled version of the waveform as shown in Figure 10. Fir
developed by Petzold and referred to envelope following [41
it is a transient-envelope method based on shooting metho
It approximates the sample envelope as a piecewise poly
mial [25,41] in a manner that is analogous to convention
transient analysis. This approach is efficient if the sequen
formed by sampling the state at the beginning of each clo
cycle,v(0), v(T), v(2T), ..., v(mT), changes slowly as a func-
tion of m. A “differential-like” equation is formed from (27)

, (47)

where is a measure of the
time-derivative of the sample envelope atmT. We can apply
traditional integration methods to compute an approximati
to the solution using a procedure that involves solving (47)
isolated time points. If the sample envelope is accurate
approximated by a low-order polynomial, then this procedu
should allow us to skip many cycles, and so find the solutio
over a vast number of cycles in an efficient manner. For R
circuits, (47) is stiff and so requires implicit integration meth
ods such as backward Euler, which can be written as

, (48)

X̃k t( )

x t( ) X̃k t( )ej2πkf t

k ∞–=

∞

∑=

X̃k t( )
X̃k t( )

X̃k

F̃k Ṽ t( ) t,( )ej2πkf t

k ∞–=

∞

∑ 0=

Fk Ṽ t( ) t,( )
dQ̃k Ṽ t( )( )

dt
-------------------------- j2πkf Q̃k Ṽ t( )( ) Ĩ k Ṽ t( )( ) Ũk+ + +=

Ṽ t( )

F̃k Ṽ t( ) t,( ) 0=

F̃ Ṽ t( ) t,( ) dQ̃ Ṽ t( )( )
dt

----------------------- ΩQ̃ Ṽ t( )( ) Ĩ Ṽ t( )( ) Ũ t( )+ + + 0= =

Q̃ Ṽ tm( )( ) Q̃– Ṽ tm 1–( )( )
tm tm 1––

------------------------------------------------------- ΩQ̃ Ṽ tm( )( ) Ĩ Ṽ tm( )( ) Ũ tm( )+ + + 0=

Ĩ Ṽ tm( )( ) Q̃ Ṽ tm( )( )
Ṽ tm( )

Ṽk t( )

∆v mT( ) φT v mT( ) mT,( )=

∆v mT( ) v m 1+( )T( ) v mT( )–=

∆v mT( ) v mT( ) v m l–( )T( )–
l

---------------------------------------------------≈
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wherel is the timestep, which is measured in terms of cycles.
This equation represents a 2-point boundary constraint on
(47), and so together they can be solved with shooting-New-
ton methods to findv(mT). If desired, other integration meth-
ods can be used, such as the backward-difference formulae.

As with transient analysis, oncev(mT) is computed, it is nec-
essary to check that the trajectory is following the low-order
polynomial as assumed. If not, the point should be discarded
and the stepl should be reduced. If rapid changes in the enve-
lope are encountered, envelope following can reduce its step-
size down to the point where no cycles are skipped, in which
case envelope following reduces to simple transient analysis.
Thus, envelope following does not suffer the accuracy prob-
lems of the Fourier-envelope method when small timesteps
are taken to resolve a rapidly changing envelope.

D.  Other Methods

The methods described above are either currently available,
or expected to be available soon, in the mainstream commer-
cial RF simulators. However, there other methods that have
the potential to become significant to RF designers. In partic-
ular, two families of methods seem promising: the Volterra
methods [31] and the MPDE methods [4,51].

The Volterra methods are similar in concept to the small-sig-
nal analyses in that they represent the circuit using a Taylor
series expansion, except they take into account more than just
the first term in the expansion. In this way, Volterra methods
can efficiently compute the response of circuits exhibiting a
small amount of distortion.

MPDE is an abbreviation for Multirate Partial Differential
Equation. It represents a family of methods based on the idea
of replacing the single time variable with a sum of time vari-
ables, one for each of the time scales in the circuit. Consider a
mixer with a 1GHz LO and a 100MHz IF. Thent would be
replaced witht = t1 + t2 wheret1 is associated with the LO
andt2 is associated with the IF. The underlying ordinary dif-
ferential equations that describe the circuit are reformulated
as partial differential equations int1 and t2. The various
MPDE methods are formulated by applying particular bound-
ary conditions and numerical methods to thet1 andt2 dimen-
sions. For example, quasiperiodic harmonic balance from
Section IV-A is a MPDE method that applies periodic bound-
ary conditions and harmonic balance to both dimensions.
Similarly, the Fourier-envelope method from Section IV-C is
a MPDE method that applies a periodic boundary condition
and harmonic balance to thet1 dimension and an initial condi-
tion and transient analysis to thet2 dimension. Many other
variations are possible.

V. COMPARING THEMETHODS

All of the methods presented can be grouped into two broad
families, those methods based on harmonic balance and those
based on shooting methods. Most of the differences between
the methods emanate from the attributes of the base methods:
harmonic balance and shooting methods. So only the base
methods will be compared.

A.  Linear Passive Component Models

The main strength of harmonic balance is its natural supp
for linear frequency-domain models. Distributed componen
such as lossy and dispersive transmission lines and inter
lated tables ofS-parameters from either measurements
electromagnetic simulators are examples of linear models t
are handled easily and efficiently with harmonic balance.

The difficulty with which shooting methods handle distrib
uted component models contrasts sharply with harmonic b
ance. The problem is that the state vector associated w
distributed components is infinite dimensional. The state ve
tor must somehow be discretized before shooting metho
can be applied. However, even then shooting methods will
expensive if the state vector is large [27,28]. This disadva
tage explains why shooting method-based RF simulati
techniques have mainly been applied to RFICs. Most RFI
can be modeled completely with lumped components. Ne
approaches for generating lumped equivalent models for d
tributed components [35,42], and components described
the frequency domain such as with tables ofS-parameters [6],
are becoming available that are more reliable and effect
than existing methods, allowing shooting methods to b
applied to circuits that contain a small number of distribute
components.

B.  Nonlinearity

Harmonic balance is very accurate and very efficient if th
circuit is near linear and the voltage and current waveform
are near sinusoidal. In fact, assuming the component mod
are correct, harmonic balance becomes exact in the lim
where the circuit is linear and the stimulus are sinusoid
This is not true for shooting methods. However this feature
generally only significant when trying to determine the dis
tortion of low distortion amplifiers and filters. It does not hel
when analyzing mixers, oscillators, and sampling circui
because these circuits contain signals that are far from sinu
idal.

Harmonic balance can struggle on strongly nonlinear circu
or circuits that contain signals with abrupt transitions. Su
signals are common in RF circuits. For example, mixers a
driven with an LO that resembles a square wave, and ev
sinusoidal oscillators contain current waveforms that are n
row pulses. In this case, many frequencies are needed to a
rately represent the signal, which increases the expense
harmonic balance. In addition, the magnitude of the harmo
ics drop slowly for signals with sharp transitions, making
difficult to know how many harmonics must be computed b
harmonic balance. If too few harmonics are included, th
results are inaccurate, if too many are included, the simu
tions can be impractical.

Harmonic balance is also susceptible to convergence pr
lems when applied to strongly nonlinear circuits. Conve
gence can be improved by employing continuation
homotopy methods [3,27] These methods initially reduce t
power of the input signal until convergence is achieved. Th
the power is stepped up in a sequence of harmonic bala
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analyses where the result computed at one step is used as the
starting point for the next to improve convergence. In this
way, harmonic balance can be made robust. However,
because continuation methods end up calling harmonic bal-
ance tens, or perhaps hundreds, of times, they can be slow.

In contrast to harmonic balance, the ability of shooting meth-
ods to handle strongly nonlinear circuits is quite good. The
strengths of shooting methods stem from the properties of its
underlying transient analysis. In particular, it chooses nonuni-
form timesteps in order to control error, and it has excellent
convergence properties.

The ability of transient analysis, and so shooting methods, to
place time points in a nonuniform manner allows it to accu-
rately and efficiently follow abruptly discontinuous wave-
forms. Small timesteps can be used to accurately resolve
rapid transitions without taking small steps everywhere. This
is very important for circuits such as mixers, relaxation oscil-
lators, switched-capacitor filters, and sample-and-holds. In
addition, the timestep is automatically chosen to control error.
With harmonic balance, the timestep is constrained to be uni-
form by the FFT, however there is new work that explores the
possibility of using new FFT algorithms that do not require
equally spaced points with harmonic balance [10, 37].

The strong convergence properties of shooting methods result
from its implementation as a multilevel Newton method, and
not from the fact it is a time-domain method. Indeed, it is pos-
sible to formulate harmonic balance as a time-domain method
[27,60], yet its convergence properties do not fundamentally
change. As described in Section IV-A, shooting methods
apply Newton’s method to solve

, (49)

for v(0). φT(v(0), 0) relates the initial state of the circuit,v(0),
to the state one period later. Newton’s method is applied to
solve (49) and is both efficient and reliable ifφT is a near lin-
ear function. This is usually the case even when the underly-
ing circuit is behaving in a strongly nonlinear fashion because
φT is evaluated over exactly a period of the large periodic
clock signal, the signal that is driving the circuit to behave
nonlinearly. EvaluatingφT itself still involves solving
strongly nonlinear sets of equations, however that is done
using transient analysis, a natural continuation method, and
so is quite robust.

The ability of shooting methods to converge on a large class
of strongly nonlinear circuits without the need for continua-
tion methods or other convergence aids represents a signifi-
cant advantage in efficiency over harmonic balance.

With shooting methods, it is natural to perform transient anal-
ysis for a while before starting the shooting iteration in order
to generate a good starting point. This is usually sufficient to
get convergence even on troublesome circuits except when
the time constants in the circuit are much larger than the
period of the signal. If this is not sufficient, one can also use
continuation methods with shooting methods. The initial tran-
sient analysis has the side benefit that it helps to identify cir-
cuits that are unexpectedly unstable.

VI. RF MEASUREMENTS

Simulators are used to predict the performance of RF circu
before they are actually constructed. This section introduc
several of the most common RF measurements used to ve
performance, with a description of how these measureme
are made using an RF simulator. The measurements prese
are representative of the most important and common m
surements being made on RF circuits.

A.  Transfer Functions

1) Conversion Gain:Conversion gain is the generalization o
gain to periodically-varying circuits such as mixers. It is sim
ply the small-signal gain through a mixer as a function of fr
quency. Typically, conversion gain refers to the transf
function from the desired input to the desired output. B
there are many other transfer functions of interest, such as
gain from an undesired image or from an undesired inp
such as the LO, power, and bias supplies.

Remember that the output signal for a periodically-varyin
circuit such as a mixer may be at a different frequency th
the input signal. The transfer functions must account for th
frequency conversion. As described earlier, these circuits m
have many images, and so for a single output frequency th
may be many transfer functions from each input.

One measures a transfer function of a mixer by applying t
LO, computing the steady-state response to the LO alone,
earizing the circuit about the LO, applying a small sinusoi
and performing one of the LPV analyses described in Sect
IV-B, such as PAC or PXF. One might also want to measu
the transfer function with a large interferer present. If th
interferer is assumed periodic, then the circuit would be li
earized about the quasiperiodic response to both the LO a
the interferer and a LQPV analysis such as QPAC or QPXF
performed.

Actual measurements on mixers have shown that it is poss
to predict conversion gain to within 0.25 dB [7].

2) AM and PM Conversion:As shown in Figure 11, when a
small sinusoid is applied to a periodically-driven or clocke
circuit, the circuit responds by generating both the upper a
lower sidebands for each harmonic. The sidebands ac
modulate the harmonics, or carrier, and the relationsh
between the sidebands and the carrier determines the cha
ter of the modulation. In Figure 12, both the carrier and i
sidebands are shown as phasors [50]. Assume that the s
bands are small relative to the carrier and that the circuit
driven at baseband with a small sinusoid with a frequency
fm. The sideband phasors rotate around the end of the car
phasor at a rate offm, with the upper sideband rotating one
way and the lower rotating the other. The composite of t
sideband phasors traces out an ellipse as shown in Fig
12(b). However, if the two sidebands have identical amp
tudes and their phase is such that they align when paralle
the carrier, the phase variations from each sideband canc
with the result being pure amplitude modulation (AM) a
shown in Figure 12(c). If instead the amplitudes are identic

φT v 0( ) 0,( ) v 0( )=
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but the phases align when perpendicular to the carrier, then
the amplitude variations cancel and the result is almost purely
a phase modulation (PM) as shown in Figure 12(d) (assuming
the sidebands are small). The DSB modulation shown in Fig-
ure 12(b) can be considered a combination of both AM and
PM modulation.

AM and PM conversion occurs either when a tone is injected
at either baseband or at a sideband. The former is referred to
as baseband to AM/PM conversion and the latter is SSB to
AM/PM conversion. Both cases were demonstrated in the
case of an oscillator by Razavi [43].

A PAC analysis directly computes the transfer function from
some small input signal to the upper and lower sidebands
components of a modulated carrier. It is also possible, using a
change of basis, to recast these transfer functions in terms of
the AM and PM components of the modulation [53]. To show
this, consider a circuit that is generating a sinusoidal carrier.
Assume that the carrier is both amplitude and phase modu-
lated by small complex exponentials at the same frequency
fm. The resulting signal would take the form

(50)

where is the amplitude modulation and
is the phase modulation. BothA andΦ are

complex coefficients. Using the narrowband angle modula-
tion approximation [68], (50) can be expanded into a sum of
complex exponentials in order to identify the upper and lower
sidebands.

(51)

(52)

where and . These
can be rearranged to giveΑ andΦ in terms ofL andU,

(53)

. (54)

Thus, given the phase of the carrier,φc, which can be com-
puted with a periodic steady-state analysis, and the trans
functions from the input to the upper and lower sidebandsL
andU, which can be computed with a periodic AC analysi
one can compute the to-AM (A) and to-PM (Φ) transfer func-
tions.

If the to-FM transfer function is desired instead, le
be the modulation signal where in (50)φ

becomes

. (55)

Then the to-FM transfer function isΦ = jωmΦ, or

. (56)

3) Oscillator Load Pull:Load pull refers to shifts in the fre-
quency of an oscillator as a function of changes in loa
impedance, supply voltage, substrate, bias lines, etc
change in load impedance represents a parametric chang
the circuit and so requires a full periodic steady-state analy
to compute the response in the oscillation frequency. Ho
ever, as long as changes in the signal levels on supplies, s
strates, and bias lines are small, sensitivity of the oscilla
frequency to perturbations of this type can be computed us
the technique given above for computing the to-FM transf
function.

B.  Cyclostationary Noise

With clocked systems, there are two effects that act to comp
cate noise analysis. First, for noise sources that are b
dependent, such as shot noise sources in BJTs or the the
noise of MOSFETs, the time-varying operating point acts
modulate the noise sources. Such noise sources are referre
as being cyclostationary. Second, the transfer function fro
the noise source to the output is also periodically-varying a
so acts to modulate the contribution of the noise source to
output. In this case, even if the noise source were stationa
as it would be for thermal noise of a linear time-invarian
resistor, the noise at the output is cyclostationary.

Modulation is a multiplication of signals in the time-domai
and so in the frequency-domain the spectrum of the no
source is convolved with the spectrum of the transfer functi
[68]. The transfer function is periodic or quasiperiodic and s
has a discrete line spectrum. Convolution with a discre
spectrum involves a series of scale, shift, and sum operati
as shown for a mixer in Figure 13. The final result is the su
of the noise contributions from each source both up-conver

Fig. 12. How the amplitude and phase relationship between
sidebands cause AM and PM variations in a carrier. The phasors with
the hollow tips represents the carrier, the phasors with the solid tips
represent the sidebands. The upper sideband rotates in the clockwise
direction and the lower in the counterclockwise direction. The
composite trajectory is shown below the individual components. (a)
Single-sideband modulation (only upper sideband). (b) Arbitrary
double-sideband modulation where there is no special relationship
between the sidebands. (c) Amplitude modulation (identical
magnitudes and phase such that phasors point in same direction
when parallel to carrier). (d) Phase modulation (identical magnitudes
and phase such that phasors point in same direction when
perpendicular to carrier).

SSB AM PM
(a) (c) (d)

DSB
(b)

Upper and Lower Sidebands Shown Separately

Sum of Upper and Lower Sidebands

vm t( ) Ac 1 α t( )+( ) 2πf ct φc φ t( )+ +( )cos=

α t( ) Aej2πf mt=
φ t( ) Φej2πf mt=

l t( ) Lej2π f m f c–( )t=

u t( ) Uej2π f m f c+( )t=

L A j– Φ( )e j– φc= U A jΦ+( )ej φc=

A Lej φc Ue j– φc+( ) 2⁄=

Φ j Le j φc Ue j– φc–( ) 2⁄=

ω t( ) Ωej2π f mt=

φ t( ) ω t( ) td∫=

Ω 2πf m Ue j– φc Lej φc–( ) 2⁄=
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and down-converted by the harmonics of the LO to the
desired output frequency. This is referred to as noise folding.

Periodic modulation of a stationary noise source, either from
a periodic bias or from a periodically-varying signal path
from the source to the output, results in cyclostationary noise
at the output. In stationary noise, there is no correlation
between noise at different frequencies. As can be seen from
Figure 13, at frequencies separated bykf cyclostationary
noise is correlated, wheref is the modulation frequency andk
is an integer [15].

1) Noise Figure:Noise is a critical concern in receivers
because of the small input signals. Typically designers char-
acterize the noise of individual blocks using the noise figure
of the block because it is relatively simple to combine the
noise figure of cascaded blocks to determine the noise figure
of the entire receiver [44,65]. The noise figure (NF) of a block
is a measure of how much the signal-to-noise ratio (SNR)
degrades as the signal passes through the block. It is defined
as

(57)

At the input of a receiver theSNRis defined as the signal
power relative to the background noise power picked up by
the antenna. Figure 6 shows that a receiver is sensitive to
noise at the input at each of its images.SNRin only includes
the noise power in the images where the input signal is found.
In heterodyne receivers, the input signal is found in a single
sideband, and so single-sideband (SSB) NF is employed. In
this case,SNRin includes only the noise power in the image
associated with the input. In homodyne, or direct-conversion,
receivers, the signal is found in both sidebands of the carrier,

and so double-sideband (DSB) NF is employed. In this case,
the images associated with the carrier overlap, andSNRin
includes the noise power from both. In both cases,SNRout
includes the affect of the input noise from all images, how
ever, it excludes the noise generated in the load at the out
frequency.

In (57) the signal power is both in the numerator and th
denominator and so cancels out. Thus, (57) can be rewritte

(58)

wherePO is the total output noise power,PL is the output
noise power that results from noise generated by the load
the output frequency, andPS is the output noise power that
results from noise generated by the source at the input f
quency. Generally, thePS used when computingDSB NFis
twice as large as the one used with computingSSB NF,
whereasPO andPL are both the same, thus theDSB NFis
usually 3 dB smaller than theSSB NF for the same circuit.

One computes the noise of a mixer by applying the LO, com
puting the steady-state response to the LO alone, lineariz
the circuit about the LO, and applying the PNoise analysis
Section IV-B. Actual measurements on bipolar mixers ha
shown that noise figure can be predicted to within 0.25 d
[7,34]. Results are not expected to be as accurate on CM
mixers because the noise model for MOS transistors is no
accurate as the one for bipolar transistors.

2) Impact of Cyclostationarity on Subsequent Stages:In gen-
eral, clocked circuits such as mixers produce cyclostationa
noise, which implies that the noise statistics, such as t
power spectral density (PSD), denotedS(f,t), varies as a peri-
odic or quasiperiodic function of time. If a spectrum analyz
is used to observe this noise, and if the frequency of the no
variation is much faster than the analyzer can track, then
spectrum analyzer will measure the time average PSD.
course, the time average PSD is not a complete character
tion of the noise, but often it is sufficient. An important ques
tion is: when is the time average PSD sufficient t
characterize the output noise of a circuit, and when it not?

This question can be answered with the help of the followin
observation. If an uncertainty in time is introduced into th
cyclostationary process — a uniformly distributed random
variable from 0 toT is added tot — the resulting process is
stationary and its statistics are the time average of the sta
tics of the cyclostationary process [15]. Similarly, if the
cyclostationary process is input to a system that does n
track the variation of the PSD with time, then the phase of t
variation is unknown to the system. In the absence of info
mation about the phase of the variation, the process becom
stationary, with the PSD equal to the time average ofS(f,t)
[62].

There are two common situations that would cause a sub
quent stage to track the variations of a cyclostationary pr
cess. The first occurs if the signal driving the subseque
stage is large enough to generate a nonlinear response.

Fig. 13. How noise is moved around by a mixer. The noise is
replicated and translated by each harmonic of the LO, resulting in
correlations at frequencies separated bykfLO.

Noise

LO

Output

LO
Input Signals

Individual Noise
Contributions

Total Output Noise

Replicate
Translate

Sum

Noise

NF 10
SNRin

SNRout
-----------------log=

NF 10
PO PL–
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--------------------log=
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happens, for example, when an oscillator drives a limiter. The
oscillator signal is large enough to drive the limiter into a
nonlinear region, causing the characteristics of the limiter to
track the variations in the cyclostationary noise produced by
the oscillator. The same is true when an oscillator drives a
mixer. The second situation is when both circuits are being
driven by large signals derived from the same reference. This
would occur if, for example, the output of one mixer were fed
to the input of another, and both were driven by the same LO.
Because they are driven by the same LO, the second mixer is
synchronous with, and tracks the variations in the cyclosta-
tionary noise of, the first mixer. In both of these cases, just
knowing the time average ofS(f,t) is not sufficient to predict
the noise performance of the entire system. In particular,
knowing the time-averaged noise figure of each of the two
mixers does not give sufficient information to predict the
noise figure of the cascaded pair.

However, in the case of the two mixers, if the second mixer
were driven with an independent LO, even one that was close
in frequency to the first LO, then the phase drift between the
two LOs would cause the synchronism between the two mix-
ers to be lost, with the result that using the time-average noise
statistics is adequate when predicting the noise performance
of the whole system. Thus, in this case, if one knows the time-
averaged noise figures for the two mixers, then one can pre-
dict the noise figure of the combination using standard formu-
las [44,65].

It is common to combine two mixers in cascade in a superhet-
erodyne receiver architecture, and to generate the LO signals
for the two mixers by using two PLLs with a common refer-
ence frequency. However, it is interesting to note that even in
this case, if the ratio of the LO frequencies ism/n wherem
andn are relatively large integers (oftenm,n ≥ 4 is sufficient)
with no common factors, then using the time average of the
noise at the output of the first mixer will usually introduce lit-
tle error when estimating the noise at the output of the second
mixer [62]. In addition, interstage filtering also acts to reduce
the chance of error. Remember that noise sidebands must be
correlated for the noise to be cyclostationary. Filtering can
convert a cyclostationary signal to a stationary signal if the
filter’s bandwidth and center frequency are such that it elim-
nates all but one sideband.

3) AM and PM Noise:As shown in Figure 13, clocked cir-
cuits generate noise with correlated sidebands. And as shown
in Figure 12, depending on the magnitude and phase of the
correlation, the noise at the output of the circuit can be AM
noise, PM noise, or some combination of the two. For exam-
ple, oscillators almost exclusively generate PM noise near the
carrier whereas noise on the control input to a variable gain
amplifier results almost completely in AM noise at the output
of the amplifier.

This ability to emphasize one type of noise over another is a
characteristic of clocked circuits and cyclostationary noise.
Linear time-invariant circuits driven by stationary noise
sources can only produceadditive noise, which can be

decomposed into AM and PM noise, but there will always b
equal amounts of both.

To find the AM or PM noise of a carrier, one must perform
PNoise analysis and output both the noise at the upper a
lower sidebands of the carrier along with their complex corr
lation. The AM and PM components of the noise can then
computed using (53) and (54).

4) Oscillator Phase Noise:One can apply the PNoise analy
ses of Section IV-B to oscillators to compute their phas
noise. Or one can apply the PXF analysis to determine t
sensitivity of the output to small interfering signals such a
those on the power supply. And as indicated earlier in th
section, these analyses are able to properly account for
quency conversions and for the fact that the noise in the o
put manifests itself largely as changes in the phase of
output.

These analyses are small-signal analyses that assume tha
circuit being analyzed does not respond in a nonlinear way
the small-signal inputs. However, (7) indicates that even sm
inputs can generate large changes in the phase if they
close in frequency to the fundamental or to one of its harmo
ics. While the deviation in oscillator phase is generally a lin
ear function of the input, the output voltage or current is
linear function of the phase only when the deviations in pha
are small. If the phase changes by a significant fraction o
period, the small-signal assumption is violated and th
response becomes a nonlinear function of the input. It is t
nonlinear response that causes the linewidth ofSv andL (the
roll-off at very low offset frequencies that is given in (12)). A
a result, the small-signal analysis results do not predict t
linewidth and so are inaccurate for computingSv andL at fre-
quencies very close to the carrier or its harmonics. Thus,
small-signal PNoise analysis can only be used to computeSv
andL for fm well abovef∆. Usually,f∆ is quite small, and so
this is not considered an issue. PNoise analysis can be use
computeSφ for all frequencies.

Actual measurements on oscillators have shown that it is p
sible to predict oscillator phase noise on bipolar resona
oscillators to within 2 dB [67].

5) Jitter and Phase Noise of PLLs:Oscillators are frequently
encapsulated in phase-locked loops in order to stabilize th
output frequency and reduce their phase noise and jitter
locking them to a more stable reference. The reference is u
ally a fixed frequency, whereas the oscillator may need
change its frequency, perhaps to allow the receiver to tu
over a range of channels. Complex feedback schemes
often necessary to satisfy the often competing requireme
of frequency tuning resolution and noise performance [14
Predicting the phase noise and jitter of such circuits can
quite difficult. They rarely operate with simple periodic o
quasiperiodic signals, and so the PNoise and QPNoise an
ses cannot be directly applied. Even if they are periodic, t
frequency ratio between the oscillator and the reference c
be so large as to make these techniques impractical. Tr
sient-envelope methods could be applied, but like simp
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transient analyses, the transient-envelope methods are not
setup to include the effect of component noise sources, which
play a large role in the noise and jitter of most PLLs.
Attempts to include device noise in generic transient and tran-
sient-envelope analyses generally fail because of the small
amplitude and wide bandwidth of device noise. Device noise
is usually much smaller than the simulator error that masquer-
ades as noise. To avoid this problem, tolerances must be set
very tight. To accurately model wideband noise without
excessively coloring it, generally a very small and usually
fixed timestep is needed. Both of these combine to make this
approach impracticable in most cases.

PLLs simulations often occur at the behavioral level rather
than at the transistor level because the transistor level simula-
tions are very expensive and because behavioral simulation of
PLLs can be quite effective. If the behavioral models can be
made to include the effect of component noise sources, they
can be used to efficiently predict the noise and jitter of PLLs
[8,29]. To do so, it is first necessary to individually character-
ize the noise behavior of the blocks that make up the PLL
using transistor-level simulation. For each block, representa-
tive periodic signals are applied and a PNoise analysis is per-
formed. Then the jitter is extracted and provided as a
parameter to behavioral models for inclusion in a high-level
simulation of the entire PLL. The noise and jitter of the PLL
can be obtained by observing the transition times in simulated
output.

C.  Intermodulation Distortion

Distortion is commonly measured in narrowband circuits by
applying two pure sinusoids with frequencies well within the
bandwidth of the circuit (call these frequenciesf1 andf2). The
harmonics of these two frequencies would be outside the
bandwidth of the circuit, however there are distortion prod-
ucts that fall at the frequencies 2f1 – f2, 2f2 – f1, 3f1 – 2f2, 3f2 –
2f1, etc. As shown in Figure 14 these frequencies should also

be well within the bandwidth of the circuit and so can be used
to measure accurately the intermodulation distortion, or IMD,
produced by the circuit.

1) Compression and Intercept Points:At low frequencies, it
is common to describe the distortion of a circuit by indicating
the distortion in the output signal when driven by a sinusoid
to achieve a certain output level. At high frequencies it is
more common to characterize the distortion produced by a
circuit in terms of a compression point or an intercept point.
These metrics characterize the circuit rather than the signal,

and as such it is not necessary to specify the signal leve
which the circuit was characterized.

To measure the compression point of a circuit, apply a sin
soid to its input and plot the output power as a function of th
power of the input. The 1 dB compression point is the poi
where the gain of the circuit has dropped 1 dB from it sma
signal asymptotic value. This is illustrated in Figure 15
iCP1dB is the input power andoCP1dB is the output power
that corresponds to the 1 dB compression point.iCP is nor-

mally used for receivers andoCP for transmitters. Compres-
sion point is typically measured in dBm, which is decibe
relative to one milliwatt.

To measure a two-tonenth-order IMD intercept point,IPn,
apply two sinusoids to the circuit’s input atf1 andf2. Make
the amplitude of the two sinusoids the same, and increa
their power while plotting the power at the output in a funda
mental (eitherf1 or f2) and in annth-order intermodulation
product (forIP3 use either 2f1 – f2 or 2f2 – f1). This is illus-
trated forIP3 in Figure 15. Thenth-order intercept pointIPn is
defined in terms of the power levels of the fundamentals a
thenth-order products as extrapolated from their asympto
small-signal behavior. When the input signal is small, a do
bling of the input power doubles the fundamental outp
power and multiplies the output power of thenth-order prod-
ucts by 2n. Thus, the asymptotic slope of the fundamental is
dB/dB and the asymptotic slope of thenth-order products isn
dB/dB. Thenth-order intercept point (IPn) is where the
asymptotes for thenth-order intermodulation product and the
fundamental cross.iIPn is the input power andoIPn is the out-
put power corresponding to the intercept point. They are ge
erally measured in dBm.

In practice it is only necessary to sweep the input power
determine an appropriate input powerPin for an accurate
extrapolation.Pin should be chosen small enough thatP1, the
output power of the first order term, andPn, the output power
of thenth-order term, are both in their asymptotic ranges. An
Pin should be chosen large enough so thatP1 andPn are com-
puted accurately by the simulator. Once an appropriatePin is
applied and the correspondingP1 andPn found, the output
intercept point is computed with

(59)

Fig. 14. A narrowband circuit driven with two closely spaced
sinusoidal tones ( ) responds by generating harmonics ( )
and intermodulation ( ) tones. Distortion of the output signal
results because several of the odd-order intermodulation tone fall
within the bandwidth of the circuit.

Fig. 15. The 1 dB compression point (CP1) is the point where the
output power of the fundamental crosses the line that represents
output power extrapolated from small-signal conditions minus 1 d
The 3rd order intercept point (IP3) is the point where the third-order
term as extrapolated from small-signal conditions crosses
extrapolated power of the fundamental.
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whereIPn is thenth-order intercept point (dBm),P is the
power in the fundamental in dBm, and∆P is the difference
between the desired output signal (P1) and the undesirednth-
order output product (Pn) in dB. P is the input powerPin if
iIPn is desired and it is the output powerP1 if oIPn is desired
[65].

IP3 is the most commonly used intercept point, but others,
includingIP2, IP5, andIP7, are also of interest.

Actual measurements on receivers have shown that it is possi-
ble to predict 1 dB compression point andIP3 to within 0.5
dB [7].

2) Rapid IP2 and IP3 Prediction:The traditional approach to
measuring intermodulation distortion is to apply two large
closely spaced test tones to the input and measure the inter-
modulation products. Both tones are large enough to generate
a nonlinear response from the circuit. Thus, at a minimum, a
two tone QPSS analysis is required. If the circuit is clocked,
such as a mixer, a third tone is also needed, in this case the
LO. As such, it can be an expensive simulation. However, in
those cases where the intermodulation products of interest fall
at the frequencies (n–1)f1 ± f2 it is not necessary for both test
tones to be large to measure intercept point. One tone (f1)
must be large to drive the circuit into a nonlinear region. The
second tone (f2) is needed only to produce an in-band
response by mixing with the distortion products generated by
the first tone. Thus, it is possible measureIP2 or IP3 using a
small-signal analyses [58], and doing so is considerably more
efficient in terms of both time and memory than using a full
large-signal quasiperiodic analysis.

To computeIP2 or IP3 of an amplifier using this approach,
apply the first tone with powerP (in dBm) and perform a PSS
analysis to computeP1 (in dBm), the power at the output in
the fundamental frequency. Then apply the second tone as a
small complex exponential at a sideband of the first tone and
use a PAC analysis to compute∆P (in dB), the ratio between
the power at the output in the fundamental frequency of the
small tone and the power at the output in thenth-order inter-
modulation product.IPn is then computed with (59).

The intermodulation distortion of a clocked circuit such as
mixer is measured in a similar manner, except the both the
LO and the first tone are applied together and the response
computed with a QPSS analysis. The response to the second
tone is computed using a QPAC analysis.

In practice this approach is limited to computingIP2 andIP3,
but given that restriction, it can be used in the same situations
as the traditional approach and gets the same answer, but is
considerably faster.

3) Blockers:A blocker is a large interfering signal in a nearby
channel that acts to degrade the reception of the desired sig-
nal. It does so in two ways, by reducing the gain and increas-
ing the noise floor of the receiver. A typical receiver, shown
in Figure 1, has both an RF and IF filter. The RF filter is
always broader than the IF filter. Thus, a blocker is often not
eliminated until it has passed through the front-end of the

receiver. If it is large enough to drive the front-end into com
pression, the effective gain for the desired signal is reduc
which reduces the sensitivity of the receiver. The effect of
blocker on gain can be determined by applying the interfer
using a PSS or QPSS analysis to compute the time-vary
operating point, and then performing either a PAC or QPA
analysis to compute the gain for the desired signal.

To see how a blocker acts to increase the noise floor, cons
its effect when it interacts with the phase noise from the loc
oscillator of the mixer used in the front-end of the receiver
shown in Figure 16. The phase noise of the LO is direct

translated onto the mixer products in a process referred to
reciprocal mixing. Although the IF filtering at the output o
the mixer may be sufficient to remove the blocker’s ma
mixing product, the desired signal is masked by the pha
noise of the LO that was down-converted by the blocke
Thus, the blocker acts to increase the noise floor of t
receiver.

Reciprocal mixing is currently a difficult simulation becaus
it is a semi-autonomous analysis. In other words, it is a qua
periodic analysis where one fundamental, the blocker,
driven, and one fundamental, the LO, is autonomous. Wh
conceptually possible, no simulator is currently available th
provides a semi-autonomous analysis. So instead, one m
replace the oscillator with a nonautonomous equivale
model and then perform a QPNoise analysis. The model m
mimic the phase noise produced by the oscillator. A Verilo
A [64] model that includes phase noise is given in Listing
This particular module does not include flicker noise, eve
though it uses theflicker_noisefunction. Notice that the slope
(the second argument) is 2. This causes the function to gen
ate noise whose power is proportional tof–2, which matches
the characteristic of oscillator noise that stems from whi
noise sources. It is not difficult to generalize this model t
include the effect of flicker noise, simply add in anothe
flicker_noise function, this time with a slope of 3.

4) Spurious Responses:Spurious responses are undesire
responses to signals at the input of the receiver that occu
frequencies that are different from the desired receive f

Fig. 16. In a receiver, the phase noise of the LO can mix with a lar
interfering signal from a neighboring channel and swamp out t
signal from the desired channel even though most of the power in
interfering IF is removed by the IF filter. This process is referred
asreciprocal mixing.

LO Interfering

Desired

Interfering IF

Desired IF
f

f

Channel

Channel

RF

IF
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quency. The undesired images of Section III-A are an exam-
ple of spurious responses. However, there are additional
frequency ranges that can result in spurious responses if the
interfering signals encountered are at sufficiently high level.
Any RF signal with a frequency that satisfies the following
relationship for any integersm andn could result in a spuri-
ous response,

, (60)

wherefin is any input frequency,fLO is the LO frequency,fIF
is the desired IF frequency. Of particular importance is the
half-IF spurious response in which (m,n) is either (2, ) or (–
2,2). This occurs atfin = (fRF + fLO)/2, midway between the
desired input frequency,fRF, and that of the LO. There are two
possible causes for a half IF response [44]. First, if the inter-
fering input signal is subject to significant amounts of second-
order distortion and the LO contains a significant second har-
monic. In this case the second harmonics of the interferer and
the LO will mix and generate a response at the IF. Second, if
the fundamental of the interferer mixes with the fundamental
of the LO and the product, atfIF/2, is subject to significant
second order distortion. The half-IF response can be predicted
from IP2 measurements [65].

5) Spectral Regrowth and ACPR:A very important issue
when transmitting digitally modulated signals is adjacent
channel power. A transmitter should only emit power in its
designated channel. Any power emitted in adjacent channels
can interfere with the proper operation of nearby receivers
that are attempting to receive signals from distant transmit-
ters. As such, transmitters have strict adjacent channel inter-
ference (ACI) or adjacent channel power (ACP) requirements
that they must satisfy. The lowpass filters in the transmitter of
Figure 2 are designed to limit the bandwidth of the transmit-
ted sequence. However, if the mixers or power amplifier are
nonlinear, intermodulation distortion can cause the bandwidth
to grow back, as shown in Figures 3 and 17. This effect is
referred to asspectral regrowth. Unfortunately, this situation

is difficult to quantify using simulation. Simple two-tone
intermodulation tests are not representative of digitally mod
lated signals. Instead, the transmission of a long pseudor
dom sequence of symbols is simulated. The output spectr
is calculated from a sequence that typically contains betwe
1k and 4k symbols. The adjacent channel power is then ch
acterized with the adjacent channel power ratio, orACPR,

(61)

wherePadj is the total power in the adjacent channel andPin
is the power in the desired channel.

The carrier frequencies are typically in the 1-5 GHz range a
the symbols typically have a rate of 10-300 kHz. Such a sim
ulation is clearly impractical for traditional transient analysi
Instead, the transient-envelope methods of Section IV-C a
used. However, simulating a 1-4k symbol sequence s
requires between 10k and 100k simulation points, each
which represents a harmonic balance or shooting meth
solve, and so even the transient-envelope methods are v
expensive for this type of simulation, particularly for a circu
with more than just a few components.

An alternative to transient-envelope simulations is to extrac
behavioral baseband-equivalent table model of the transmi
using one of the large-signal steady-state methods descri
in Section IV-A [5]. Because the behavioral model abstrac
away the carrier and unnecessary circuit details, the AC
calculation step is fast regardless of circuit size or complexi

In transmitter circuits the input baseband signal is usua
well within the transmitter’s bandwidth, so a memoryles
model often suffices. This is important because it makes g
erating the behavioral models fairly easy. A table model
constructed by simply exercising the circuit over a range
input amplitudes and phases and computing the steady-s
responses. This approach is accurate if the bandwidth of
circuit is wide compared with the bandwidth of the signa
Given the high carrier frequencies (1 GHz and above) and
low signal bandwidths (1.23 MHz for the relatively broad
band IS-95 CDMA standard) this assumption is relative
safe. There is, however, one situation that will cause th
assumption to be violated, if low frequency dynamics
either the power supply or the bias supply lines significant
affect the characteristics of the transmitter’s signal path. It
easy to check for this situation using a periodic transfer fun
tion analysis. Simply apply a large periodic signal to repr

LISTING I
VERILOG-A OSCILLATOR MODEL THAT INCLUDES PHASE NOISE.

// Oscillator with Phase Noise

‘include “discipline.h”
‘include “constants.h”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf);
parameter real ampl=1;
parameter real pn=0;

real phase, phase_noise;

analog begin
phase = 2*‘M_PI*freq*$realtime;
phase_noise = flicker_noise(ph,2);
V(out) <+ ampl*cos(phase + phase_noise);

end
endmodule

m f in± n f LO± f IF±=

2–

Fig. 17. Intermodulation distortion in a power amplifier spreads t
bandwidth of the transmitted signal to the point where it can interfe
with adjacent channels.
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sent an unmodulated carrier, and then perform the PXF
analysis over a range of frequencies centered about the car-
rier. If the transfer functions are relatively constant over the
signal bandwidth, it is appropriate to use a memoryless table
model. Otherwise a more sophisticated model or a transient-
envelope simulation is needed.

6) Triple Beats:The term triple-beat refers to three-tone,
third-order intermodulation distortion. Three-tone IMD
involves terms of the formf1 ± f2 ± f3 where as the two-tone
IMD discussed earlier involves terms of the form 2f1 ± f2 and
f1 ± 2f2. Interference caused by triple beats is 6 dB higher
than that caused by two-tone IMD [65]. Thus, if there are
only three tones, one can determine the size of the triple beats
rather simply from a two-tone IMD measurement. However,
if the number of tones becomes large, the number of triple
beats becomes very large. The number of triple beats gener-
ated isn(n–1)(n–2)/2, wheren is the number of tones. Even
for a moderate number of tones it becomes an arduous task to
track the triple beats because of their numbers, which makes
estimation of triple-beat interference using this approach dif-
ficult if not impossible when there are a large number of
tones.

7) Multichannel Systems:In modern cellular phone systems,
the handset transmitters are power controlled, so the power
received at the basestation for each channel is roughly the
same. The receivers used in cable tuners and repeaters and
satellite communications also must operate properly in the
presence of a multitude of large carriers. In this setting, dis-
tortion performance is often difficult to quantify because of
the large number of intermodulation distortion products. If we
consider only third-order nonlinearities, there are two types of
intermodulation distortion of concern, two-tone IMD and
three-tone IMD (triple-beats). If there are a large number of
equally spaced and equally sized carriers then two-tone IMD
is constant over the band while triple-beat distortion peaks in
the middle of the band [65]. In addition, there are many more
triple-beat products than two-tone products. These, combined
with the triple-beats being twice as large as the two-tone
products, results in triple-beat IMD limiting the dynamic
range of multichannel systems more than two-tone IMD, par-
ticularly in the center of the band.

Dynamic range of multichannel systems is characterized
using a spurious-free dynamic range (SFDR) or noise-power
ratio (NPR) measurement, which is illustrated in Figure 18.

This measurement mimics the situation where all channels
are being received at their maximum level. The transmitter
assigned to one channel near the middle of the band (where
triple-beat distortion is at its highest) is then turned on and

off. SFDR or NPR is the ratio of the power in that channe
when the transmitter is on relative to the power when it is o
When the transmitter is off, the power in the channel is due
intermodulation distortion cause by the other channels. SFD
or NPR represents the dynamic range available in that ch
nel.

In cable multichannel systems simple transient analysis
used to compute SFDR/NPR. However, in wireless mul
channel systems the frequency of the lowest channel is m
greater than the channel spacing and so transient-envel
methods would be used. However, as with ACPR, this can
a very expensive simulation, particularly if the carriers a
modulated. And as with ACPR, there are many cases wh
the multichannel system being tested is broadband. In t
case it is possible to generate a memoryless table mode
before and efficiently evaluate the table model to predi
SFDR/NPR. And again, PXF analysis can be used to ver
the broadband assumption.
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