how big can you dream?™

PRINCIPLES OF TOP-DOWN MIXED-SIGNAL DESIGN

Ken Kundert

1 CADENCE DESIGN SYSTEMS, INC.

ISSCC SHORT COURSE ON SYSTEM-ON-A-CHIP DESIGN MIXED-SIGNAL DESIGN AND SIMULATION

A. A man who acts with deliberate disregard for another's feelings or rights.

A. A man who acts with deliberate disregard for another's feelings or rights.

B. An acronym for Computer-Aided Design.

A. A man who acts with deliberate disregard for another's feelings or rights.

B. Computer-Aided Design.

C. All of the above.

Design Starts

- MS design starts increasing at 9% CAGR
 - Pure digital falling at 12.5% / year

PERVASIVENESS OF MIXED-SIGNAL DESIGN

- Playing a critical role in every high-value market served by electronics industry
 - Communications: networking and wireless
 - Computing: peripherals, communication in the core
- Traditionally mixed-signal is confined to periphery of systems
 - Used to interface to real world to sense, control, communicate, etc.
 - Amount of periphery is growing
 - Was only periphery of box
 - Increasingly moving to periphery of chip
 - Eventually will move to periphery of block

STATE OF MIXED-SIGNAL DESIGN

- Design methodology characterized by ...
 - Heavy dependence on transistor level design
 - Lack of synthesis
 - Need for repeated design and silicon iterations
 - Slow, labor intensive, design cycles
 - "Analog required 20% of the area, and 80% of the effort and time"
- Severe time and risk mismatch with digital
 - Acts to discourage integration of analog onto digital chips
 - Makes MS-SOCs both expensive and risky

DIGITAL DESIGN

- Methodology
 - Start with RTL description of finite-state machine
 - Verify with formal verification or logic simulation
 - Synthesize to gate level
 - Lay out
 - Extract, verify and refine
- Result
 - 3 month design cycle typical
 - First time silicon success typical

MIXED-SIGNAL DESIGN

- Methodology
 - System exploration with Matlab, spreadsheets or previous experience
 - Transistor level design of individual blocks
 - Transistor level verification with SPICE
 - Lay out
 - Extraction and final verification with SPICE
- Result
 - 18 month design cycle typical
 - 2-4 respins needed typically

ISSUES WITH MIXED-SIGNAL DESIGN

- Huge schedule and risk mismatch between analog and digital
 - Difficult to justify combining them
 - Problematic if they must be combined
- High risk makes planning difficult
 - When will product be available? When will designers be available?
- Long design cycles imply long time-to-market
 - Cannot quickly react to changes in markets
- Expensive to develop products
- Design talent scarcity exacerbated by low productivity of design process

MIXED-SIGNAL DESIGN DRIVERS

- Time to market
- Complexity
- Avoidance of risk
- Reuse
- Increasing fluid design and process requirements
- Gigabit I/O

TIME TO MARKET

- Reduced time-to-market required by ...
 - Stiff competition
 - Shrinking product lifetimes
- First to market generally captures the lion's share of market
 - Assuming an innovative and well-designed product
- Timely follow-ons keep competitors at bay
 - New features
 - Reduced prices

EFFECT ON RETURN OF BEING LATE TO MARKET

REDUCING TIME TO MARKET

- Design methodology must
 - Minimize design and silicon iterations
 - Maximize efficiency of each designer
 - Make it possible to efficiently use more designers
 - Reorganize tasks to make them more parallel
 - Eliminate serial dependencies

- Increasing complexity as circuits become larger
 - Increasing integration
 - To reduce cost, size, weight, and power dissipation
- Increasing complexity of signal processing
 - Implementation of algorithms in silicon
 - Adaptive circuits, error correction, PLL's, etc.
- Two forms of complexity combine to overwhelm designers

COMPLEXITY: IMPROVING CAD IS NOT ENOUGH

"Fundamental improvements in design methodology <u>and</u> CAD tools will be required to manage the overwhelming design and verification complexity"

Dr. H. Samueli, co-chairman and CTO, Broadcom Corp. Invited Keynote Address, "Broadband communication ICs: enabling high-bandwidth connectivity in the home and office", *Slide supplement 1999 to the Digest of Technical Papers*, pp. 29-35, International Solid State Circuits Conference, Feb 15-17, 1999, San Francisco, CA

AVOIDANCE OF RISK

- Recent downturn in economy has exacerbated a fear of risk
 - Respins can overrun development budget
 - Especially with the high-cost of CMOS fabrication
 - Respins can delay revenue, make a product irrelevant
- Result is a fear of mixed-signal design
 - Mixed-signal design is much riskier than digital design

- IP reuse Reuse of individual blocks
 - Process evolution and difficulty of migration limits lifetime of IP
 - This limits additional investment expended to support reuse
 - Which in turn, limits IP reuse
- Derivatives Reuse of entire systems
 - Current design process creates designs that are difficult to inherit
 - Result is an unpleasant choice
 - Keep team on design to speed derivatives (consumes top team)
 - Assign less talented team on derivatives (chance they could flounder)

INCREASING FLUID DESIGN AND PROCESS REQUIREMENTS

- Time-to-market pressures forcing design process to begin before requirements are set
 - Example: communication standards
- Reuse requires that design be tolerant of changes in process, application
- Design methodology should be adept at handling change
 - Allows changes to be quickly proposed, evaluated, communicated
 - Assures design is thoroughly verified after change occurs

- High-speed serial I/O is increasingly important in highperformance digital systems
- Cannot be placed on separate chip
- Cannot significantly slow release of SOCs
- This is where immovable object (existing analog design process) meets irresistible force (time-to-market needs of high-value SOCs)
 - Will require a dramatic improvement of analog design process

TRADITIONAL DESIGN METHODOLOGY: BOTTOM-UP DESIGN

- Design starts by partitioning design specifications
 - Perhaps with help of spread sheets or Matlab simulations
- Individual blocks are designed at transistor level
 - Each block is verified as a stand-alone unit against specifications
- Blocks are combined and system is verified at transistor level

BOTTOM-UP DESIGN ISSUES

- For complex designs, greatest impact on performance is usually found at architectural level
 - System-level exploration deemphasized in most bottom-up design
- Once blocks are combined, simulation takes a long time
 - Always limits verification, often results in respins
 - Most errors occur when combining blocks, not adequately verified
- Any errors found when assembling system are expensive to fix
 - Involves redesign of blocks

BOTTOM-UP DESIGN ISSUES (cont)

- Informal, error prone approach to communication employed
 - Any failure in communication likely results in respins
 - Need close contact and intensive communication between designers
 - Limits the number of engineers that can be used effectively
 - Limits ability to spread design team over multiple locations
- Many steps in design process are inherently serial
 - Lengthens time to market

MOVING TO TOP-DOWN DESIGN

- In order to address these issues, many design teams are looking to move to a top-down design methodology
- They are adding a more thorough investigation of system architecture to existing design methodology
 - Use Matlab, Simulink, etc. to investigate system-level trades
- This is widely taken to be top-down design
 - However, this methodology is not very different from bottom-up design
 - Does not address most of the issues with bottom-up design
 - More is needed, more can be done

TOP-DOWN DESIGN WHAT ELSE IS NEEDED

- Improve communications between members of design team
 - Focus on both current and future members of team (reuse)
- Improve verification
 - Find errors that occur during system assembly
 - Find them early so they can be quickly fixed
- Increase parallelism, reduce number of serial tasks
- Improve designer effectiveness and productivity
- Eliminate respins!

IMPROVING TOP-DOWN DESIGN

A well-designed and effective top-down design process will ...

- Progress smoothly from system design to layout without discontinuities (abrupt transitions or "one-way valves")
 - Discontinuities are an important source of errors
- Naturally formalize and improve effectiveness of communication
- Increase quantity and quality of verification
 - Should move it earlier in design process where fixes are cheaper
- Emphasize use of carrots, de-emphasize use of sticks

PRINCIPLES OF TOP-DOWN DESIGN

- A shared design representation
 - Representation is shared between all team members, design phases
- Every change is verified
 - In context of entire, previously verified, system
- Careful verification planning
 - Risks are identified up front, plans are developed to mitigate risks
- Take an initial quick pass through the entire design process
 - Use abstractions and estimates as needed to include impact of physical design early in the design process
- Executable specifications and plans
 - Scripts and models are preferred over documents

A SHARED DESIGN REPRESENTATION

- Today
 - System designers use Matlab, spread sheets
 - Circuit designers use Verilog, VHDL, or SPICE
 - Use paper to communicate important design requirements
 - Disconnects design process, gap causes errors that force respins
- Using a shared design representation based on Verilog/VHDL-AMS
 - System designer passes models to circuit designers
 - Circuit designers verify their blocks in context of entire system
 - Shared design representation improves communications

EVERY CHANGE IS VERIFIED

- Progressing from system to architectural to circuit to layout ...
 - Each change should be verified with mixed-level simulation
 - Individually refine blocks to next lower level
 - Verify by co-simulating block as implemented with rest of system represented using high-level behavioral models
 - Generally, only one or two blocks are at transistor or layout levels at any one time
- Each block is verified in the context of the whole system
 - Easy to see effect of block imperfections on system performance
 - Interfaces are repeatedly tested

CAREFUL VERIFICATION PLANNING

- Existing chips are too large and complex to effectively verify using brute-force simulation at transistor level
- Increase effectiveness of verification with thoughtful strategy
 - Anticipate problems
 - Develop efficient strategies for detecting them early
 - Heavily exploit mixed-level simulation
 - Focus on inter-block problems
- Verification plan includes detailed simulation and modeling plans

AN QUICK INITIAL DESIGN

- Estimate impact of early design decisions on later design stages
- Start with estimates, refine as the detail becomes available
 - Top level behavioral
 - Block level behavioral
 - Block size estimates
 - Initial floor plan
 - Initial routings
 - Parasitic extraction
 - Annotate back to top level simulations
- Avoids redesigns by exposing problems early

EXECUTABLE SPECIFICATIONS AND PLANS

- Written specifications and plans are poorly leveraged
 - Time consuming to write
 - Often ambiguous and out-of-date
 - Often go unread
 - Rarely effective at improving communications between designers
 - Viewed as low value by those that both write and read them
- In contrast, models and scripts are highly leveraged
 - Used on a daily basis and consistently maintained
 - Inherently very specific, eliminates ambiguity that leads to respins
 - Viewed as high value

EXECUTABLE SPECIFICATIONS AND PLANS (cont)

- Models and scripts should be maintained with the design data
 - Single copy, shared between all designers
 - Available to support reuse
 - Validated high-level models available at end of design process
 - These models used to evaluate suitability of blocks for IP reuse
 - Models and scripts help new team members become acclimated
 - Particularly important for derivatives

A RIGOROUS TOP-DOWN DESIGN PROCESS

- A rigorous top-down design process includes these components
 - Simulation and modeling plans
 - System-level exploration and verification
 - Mixed-level simulation
 - Bottom-up verification
 - Final verification
 - Test
- Will resolve all of the issues identified with previous design methodologies

SIMULATION AND MODELING PLANS

- Identify particular areas of concern
 - Develop plans for verifying each area of concern
- Plans specify
 - How tests are performed
 - Which blocks are a transistor level
 - What effects should be include in behavioral models, etc.
- Plans assure
 - Nothing is forgotten
 - Verification occurs as early as possible
 - Verification is efficient as possible
 - Blocks are not over-modeled, run efficiently
 - Reliance on transistor-level final verification is minimized

SYSTEM-LEVEL EXPLORATION AND VERIFICATION

- System designers first choose algorithm, then architecture
- Use system simulators to understand and refine algorithm
 - Matlab, Simulink, SPW, etc.
- Then maps algorithm to a particular architecture
 - Accurately reflect way algorithm is partitioned for implementation
 - Interfaces also chosen to avoid coupling that is hard to predict, control, or model
 - MS-HDL (Verilog & VHDL-AMS) preferred during this phase
 - Use "pin-accurate" models of block to enable mixed-level simulation

SYSTEM-LEVEL EXPLORATION AND VERIFICATION (cont)

- Transition between algorithm and architecture design is currently a discontinuity in the design flow
 - Tools used during algorithm design are different from those used during and after architecture design
 - Operate off of different design representations
- MS-HDLs could be used to design algorithm
 - But they are new, and do not yet have sufficient libraries or application support
 - Alternative is to use a combination system & AMS simulator

– Such as *AMS Designer* from Cadence – it includes SPW

MIXED-LEVEL SIMULATION

- Starts with executable "pin-accurate" block diagram
 - Every block represented with a behavioral model
 - Block interfaces are carefully modeled
 - Right number of pins, correct polarities, levels, impedances, etc.
 - Behavioral models act as executable specifications for blocks
- Selectively move individual blocks to transistor level
 - Simulator must support both behavioral & transistor simulation
 - Verilog-AMS, VHDL-AMS
 - System acts as a test bench for the block
 - Block is verified in the context of the overall system
 - Allows effect of block performance on overall system to be observed

MIXED-LEVEL SIMULATION (cont)

- Needed to assure accurate refinement to implementation
 - Necessitated by lack of synthesis
 - Assures block interfaces conform to agreements
 - Eliminates a major source of errors that cause respins
 - Moves verification up, making it faster and easier to fix errors
 - Allows verification to be parallelized
- Provides natural and effective way of sharing information
 - Especially between system and block designers
- Only viable approach for verifying complex mixed-signal systems
- Depends on careful verification planning

BOTTOM-UP VERIFICATION

- Update behavioral models after implementation
 - Model "as implemented" rather than "as specified" behavior
 - Updating of models is driven by modeling plan
- Update models during mixed-level simulation (don't wait to end)
 - Update models as information becomes available
 - From initial transistor schematic, from layout
 - More accurate, more thoroughly verified models
 - Makes mixed-level simulation more effective
 - Don't make models too slow
- Build and verify abstract models of blocks for IP reuse
 - Allows evaluation of IP by external groups while hiding details

FINAL VERIFICATION

- Extensive transistor-level final verification is generally impossible
 - Even with fast, reduced accuracy, transistor-level simulators
 - Need for it is greatly reduced by mixed-level simulation
- Transistor-level simulation used judiciously
 - As dictated by simulation plan
 - Identify and verify areas of special concern
 - Critical paths, start-up behavior
 - Idea is not to eliminate transistor-level verification, but to maximize its effectiveness while minimizing time doing it

TEST DEVELOPMENT

- Develop and test ...
 - Tester programs
 - Built-in self test
 - Scan test
- Starts once executable block diagram available
 - Moves up and parallelizes a serial task that occurred late, acted a gate to release
 - Significantly reduces time-to-production
 - Can find untestable chips earlier
 - Can improve tests, increasing yield

TOP-DOWN DESIGN TEAM

- A large top-down team consists of the following roles and responsibilities
 - Team lead
 - Top-level designer
 - System designer
 - Block designers
 - Modeling engineers
 - Test engineers
 - Senior architect
 - Program manager

- Focus on single project
- Manages schedule & resources
- Acts as technical interface to customers
- Develops simulation & modeling plans
- Manages communications between designers
- Interfaces with design methodology group, responsible for PDKs
- Contributes to architecture, partitioning of block specs, test plan
- Ultimately responsible for technical execution of implementation

TOP-LEVEL DESIGNER

- Works on single project at a time
- Specifies how blocks are assembled
- Owns floorplan, inter-block wiring, top-level schematic
- Responsible for top-level verification and mixed-level simulation
 - Assures changes to block interfaces, updated behavioral models, are properly communicated and employed
- Designs supply, bias, and clock distribution networks
- Typically an experienced block designer
 - Also understands physical design and architecture

BEHAVIORAL MODELING

- Responsibility for writing behavioral models varies with
 - Complexity of project
 - Type of block
- Simple blocks typically written by block designers
 - Use to debug test bench
- Complex blocks written by system designer or modeling engineer
 - Models such as PLL or CDR require specialized knowledge & skill
- System or top-level designers usually create system-level test benches

MIXED-SIGNAL HARDWARE DESCRIPTION LANGUAGES

- Verilog-AMS or VHDL-AMS
- Allows co-simulation with behavioral, gate, and transistor levels
- Shared simulator for analog, digital and system designers
- Supports analog event-driven modeling
 - Gives tremendous performance boost to analog behavioral models
 - ADCs, DACs, PLLs, CDRs, modulators, S&H, SC filters, etc.
- Simulators are available
 - Cadence's AMS Designer combines Spectre & NCsim to provide ...
 - Verilog-AMS, VHDL, SPICE

EXAMPLE: SERDES MACRO

- Serdes is a serializer and deserializer combination
- Used for high-speed serial communication
- Serdes Macro is a block that is placed on a chip, generally in a group
- A group of serdes should share a single reference oscillator
 - Natural for serializers, but not for deserializers
 - If each deserializer has its own VCO there is a high likelihood of entrainment (injection locking through coupling)
 - Instead use reference oscillator and phase interpolator
 - Can correct frequency offsets up to ~100 PPM or so

EXAMPLE: DESERIALIZER MACROS

EXAMPLE: CLOCK RECOVERY

EXAMPLE: TDD OF SERDES MACRO Verification Plan

- Build Verilog model for every cell
 - Assures basic connectivity and functionality
- Use cell characterization for phase detector, divider, serial-toparallel converter
- Use mixed-level simulation with charge pump & phase interpolator at transistor level
 - Consider jitter in input, data dependent jitter, jitter in reference oscillator, noise in supply and bias lines, killer packets (many bits in a row, all of same value), etc.
- Run simulations for 10-100 corners, choose worst for full transistor level verification
- Run high-level simulation for each of >100 operating modes

EXAMPLE: TDD OF SERDES MACRO (cont)

- Simulation of clock recovery
 - Everything at transistor level: 3-4 days
 - Only phase interpolator at transistor level: 3-6 hours
 - Everything at behavioral level: < 15 minutes</p>
- Share Verilog models with customer
 - Two types: functionality based on Verilog, analog based on SPICE
 - Verilog represents full Serdes, models all kinds of timing effects
 - High level model used verify use of serdes in higher level system
 - Analog only represents amplifier, equalizer
 - Low-level model use when designing boards and packages, design for open eye.

EXAMPLE: TDD OF SERDES MACRO (cont) Future Improvements

- Move to Verilog-AMS
 - Customer only needs one model
 - Allows more faithful modeling of analog portion of system
 - 200 bias lines
 - Include additional effects
 - Varying input amplitude,
 - Channel model
 - Dispersion
 - AC coupling.
 - Includes effect of programmable gain, programmable equalizer, etc

TOP-DOWN DESIGN

- More than just adding Matlab simulations to bottom-up process
- Must follow top-down principles to address all issues of BUD
 - Shared design representation
 - Verify every change
 - Plan verification
 - Executable specifications and plans
- Requires substantial investment & commitment from all involved
 - Much easier second time around
 - Provides dramatic returns once mastered

TOP-DOWN DESIGN

- Shorter time to market
 - Fewer design and silicon iterations
 - Allows larger, more dispersed, design teams
 - Reduces serial dependencies, allowing parallel development
- Improves productivity
- Allows more complex designs to be undertaken
- Provides a shorter, more predictable, design process
- Tolerant of late changes to requirements, process
- Encourages and supports reuse

THE DESIGNER'S GUIDE

- A website focused on simulation and modeling for analog, RF, and mixed-signal designers
 - <u>www.designers-guide.com</u>
- Includes articles on analysis, modeling, design, and theory
- Interactive discussion forum where you can ask and answer simulation, modeling, and design related questions
- Contains a special 'by invitation only' paper on top-down design
 - <u>www.designers-guide.com/private/tdd-principles.pdf</u>
 - Please, only for paid attendees of this ISSCC short course

how big can you dream?™