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Abstract - A procedure for modeling and simulation of
arbitrary nonlinear magnetics devices is presented. A set of
electromagnetic primitives is described as implemented in
SpectreHDL. The primitives include cores, gaps, and windings
that are combined to model ferromagnetic inductors and
transformers. A ferromagnetic core model based on the Jiles/
Atherton algorithm [1][2] is described. The model is used to
illustrate how to overcome some difficult modelling issues such
as hysteresis, implicit equations, and multi-disciplinary models.

L. INTRODUCTION

Many designs for power applications, such as switching
power supply and regulator circuits, make use of ferromag-
netic inductors and transformers. These applications have
created a need for a model that can accurately describe the
operation of nonlinear magnetic devices. Unfortunately, these
devices exhibit several qualities that make modeling difficult.
In particular, the nonlinear hysteric nature and the wide
variety of core topologies pose a challenge to generic
modeling of such devices.

It is impractical to model all possible configurations with a
single model topology. Instead, a transformer model of
arbitrary complexity can be assembled using a small set of
building blocks composed of windings, cores, and gaps.

This paper describes a methodology to represent nonlinear
magnetics devices. Models are developed to describe the
operation of each of the building blocks. Linear relationships
are used to describe the winding and gap models. The theory
behind the nonlinear core model is described in detail. Models
for the ferromagnetic primitives are implemented in
SpectreHDL. Finally, the results from a simulation of a trans-
former is presented.

II. MODELING APPROACH

Various transformer configurations can be modeled by
treating the magnetic portion of the component as a circuit
itself. The circuit consists of cores, gaps and windings inter-
connected in a topology that matches that of the component
being modeled. The magnetic components relate magnetic
force (F) and flux (P). The cores and gaps are purely magnetic
components, whereas the windings represent a coupling
between the electrical and magnetic circuits.

Consider a transformer with four windings constructed in
an E configuration with a gap in the center arm. Physically,
the transformer is shown in Figure 1. Schematically, the same
transformer is shown in Figure 2. C1, C2, and C3 represent
core fragments that model the three arms of the E core. G1
represents the gap in the center arm and G2 represents the
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leakage through the air around the windings. W1, W2, W3, and
‘W4 are the four windings.
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Figure 2. Topological Representation of an E Core.

III. LINEAR MAGNETICS PRIMITIVES

In order to understand the theory behind this algorithm, it is
helpful to first review the relationships between the funda-
mental electric and magnetic quantities. Figure 3 depicts the
relationships between each of the electrical quantities and the
analogous relationships between their magnetic counterparts.
The transformations between these two domains are defined by
Faraday’s Law and Ampere’s Law.

A. The Gap Mode!

An air gap in a magnetic circuit is analogous to a linear
resistor in an electrical circuit. It is represented by a linear
reluctance, R, that is a function of the cross-sectional area of the
core, the gap length, and the permeability of free space, L.
From Figure 3, it is seen that the reluctance is the relationship
between the magneto-motive force, 7, and the flux, ®. The
mathematical relationship is shown in Equation 1.
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Figure 3. Relationships Between Electric and Magnetic Quantities.
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B.The Winding Model

A winding couples the electrical and magnetic domains.
The energy transferred between domains is scaled by the
number of turns in the winding, N. The relationship from the
electrical to the magnetic domain is defined by Ampere’s Law
as shown in Equation 2.

Similarly, the energy transfer from the magnetic back to the
electrical domain is defined by Faraday’s Law. In addition, the
electrical winding can have a finite series resistance, Ry,
defined by Ohm’s Law. These effects are combined via super-
position, resulting in the relationship shown in Equation 3.

dd

V= Ry T+N 3)

IV. NONLINEAR MAGNETICS THEORY

This section describes the underlying theory of the
nonlinear behavior of ferromagnetic devices. The model is
based on a phenomenological algorithm that emulates
magnetic behavior using differential equation based mathe-
matics.

While the magnetic quantities analogous to voltage (V) and
current (/) are magneto-motive force () and magnetic flux
(®), the behavior of a saturable magnetic core is typically
described in terms of its magnetic flux density (B) vs.
magnetic field intensity (/). This relationship takes the form
of a bistable sigmoid, as shown in Figure 4.

The relationship between B and H is defined by the
permeability (W) of the material. For magnetic materials, the
permeability can be related to the permeability of free
space (lig) by the relative permeability (14,). A particular class
of magnetic materials (ferromagnetic) can exhibit variable
nonlinear relative permeabilities. The relationships between
these quantities is shown in Equation 4.

B = wH= pop H= p (H+M) @

The parameter M in the equation refers to the magnetism or
field intensity within the material that is contributed by the
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Figure 4. B vs. H Curve with Minor Loops. [4]

magnetic domains. The variation in permeability (JL) is a result
of the changing magnetism (M) of the solid as energy from the
applied field (H) is absorbed into the domains. Since the
relative permeability (i1,) is dependent on the ratio of applied
and resident fields (magnetic susceptibility), the field density
equation may be expanded into the more general relationship
given by the final relationship, in which the relative perme-
ability is incorporated into the internal field intensity
component (M).

If a sample of magnetic material is examined on a per
domain basis, the differential field strength around any given
domain will be somewhat larger than expected due to its
proximity to the remainder of the domains in the material. In
effect, a given domain experiences the magnetic influence of
the averaged total magnetism of the solid, since the orientation
of any given domain may be random. At this point, it is appro-
priate to define an effective magnetic field intensity (H,z),
existing within the solid, that is the sum of the applied field
and some averaged contribution from the magnetism (M) of the
surrounding domains. The proposed equation adjusts the
percentage of bulk magnetism (M) added to the applied field
intensity (H) through the scaling coefficient alpha (o) which
typically has a value around 103, The modified relationship for
the magnetic field intensity experienced by a single domain is
given by Equation 5.

Heff=H+(xM' 5)

If a magnetic material was able to return all of the magnetic
energy that was input, the resulting magnetization curve would
take the form of a single valued sigmoid (equivalent to the
center line of the hysteresis loop shown in Figure 4). This
curve, referred to as the anhysteric magnetization curve, repre-
sents the ideal or lossless magnetization of a material. The
function that was chosen to model this semi-empirical repre-
sentation was developed by Langevin [5]. The parameters used
to calculate this quantity are the effective field strength (Hep)
given by Equation 5, the saturation level (M,,,), and the
shaping coefficient gamma (y), which adjusts the slope of the
curve according to the magnetic hardness of the material. The
phenomenological representation of anhysteric
magnetization (M,,,) proposed by Langevin is defined by
Equation 6.
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The total magnetic field in ferromagnetic materials can be
separated into ideal and irreversible components, where the
irreversible represents the energy dissipated in magnetizing
the material. Jiles and Atherton formulated a model which
expresses the total magnetization as a weighted average in the
form shown in Equation 7.

M = CManh+ (1 ‘C)Mirr ™

The equation is composed of an anhysteric term which is a
true function, in the mathematical sense, of the applied
magnetic field (H) defined implicitly through the Langevin
function, and an irreversible term which is a contribution
computed through inexact differentials. The fundamental
differential equation, proposed by Jiles and Atherton, is
shown in Equation 8. The underlying theory is beyond the
scope of this paper, but a more detailed derivation is given in
the references [1][2].

am,
=M - Bk 8)
M =M, -8k .

The equation consists of a magnetization term for the
anhysteric component (representing the lossless term) and a
magnetization term for the irreversible component that lumps
the material dependent variation into a single term (k). The
parameter delta (d) can take on the values of either 1 or -1
depending on whether it is the positive or negative half cycle
of input function, respectively. This equation can be converted
to the standard differential notation by substituting Equation 5
into Equation 8 for the effective field (H,) and rearranging
terms. The resulting form is shown in Equation 9.

ﬂlirr Man/z - Mirr
dH T

= )
dk-o (Manh irr

Equation 9 can be combined with Equation 7 to define the
total differential susceptibility of the material. Integration of
this quantity results in the total susceptibility (y,,) which is
defined as the ratio between M and H. Referring to Equation 4,
the relative permeability (l1;) can be alternately defined as
shown in Equation 10.

T (10)

M
M =—=+1=y +1
m
Referring to Figure 3, the final relationship between
magnetic flux () and magneto-motive force (F) can now be
defined as shown in Equation 11.

®= BA= pyu AH= WA (H+M) (1)

The nonlinear reluctance (X) of the core, equal to the recip-

rocal of susceptance (), is defined as the ratio between Fand
@, as shown in Equation 12.

ol Fo o1

= = —= (12)
o pA M
* oA (1+5)

V. SPECTREHDL MODEL

Three SpectreHDL modules were developed based on the
theory derived in the previous sections. The gap, winding and
core module definitions are listed in Tables 1, 2, and 3, respec-
tively.

The SpectreHDL language provides pre-defined node/
branch quantities of voltage (V) and current (/) in the electrical
domain and magneto-motive force (MMF) and magnetic
flux (Wb) in the magnetic domain. Functions by these names
are used to access their respective quantities (V(a,b) is the
voltage between nodes a and b; I(a) is the current into port a).

The air gap module in Table 1 is a direct implementation of
the relationship shown in Equation 1. Note that the simplicity
of this language allows for very concise specification of mathe-
matical relationships. The ability to pass in arguments (/en and
area), with optional default values and bounds checking,
allows for generic use of the module.

Table 1: Air Gap Module
module gap({p,n) (len, area)
node [MMF, Wb} p, n;
parameter real len=.1 from
parameter real area=l from
{

[0:inf);// eff.len.
(0:inf);// area

analog {
MMF (p, n)
}

<- len * Wb(p,n) / (u0 * area);

The winding module in Table 2 directly implements the
relationships defined by Equations 2 and 3 which couple the
magnetic and electrical domains. Note that the dot operator is
used to perform the time derivative.

Table 2: Electro-Magnetic Winding Module
module winding({(el,e2,ml,m2) (turns, r)
node [V, 1] el, e2;
node [MMF, Wb] ml, mZ2;
parameter real turns=1l;
parameter real r=0;// winding resist. per turn

{

analog {
MMF (ml,m2) <- turns * I(el,e2);
Viel,e2) <- turns * (r * I(el,e2) -

dot (Wb (ml,m2)));

The core module in Table 3 defines the F vs. & relationship
as a function of the parameters of the core. This module is
implemented such that it can be shared between instances of
each device. The arguments passed into the model (len and
area) are specific to each instance, whereas the remaining
parameter statements define defaults and bounds for the model
parameters that are shared between instances.

Equation 9 describes the characteristics of the magnetic
material in terms of incremental quantities, and so cannot be
used directly in SpectreHDL. However, the equation can be
converted into a useable form by first multiplying both sides by
dH and integrating, then replacing dH with (dH/dt)dt:

M. = anh” Mirr
wr jék—a M.

anh ~ “irr

Hdt

(13)
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Notice that this is an implicit equation, as ,,, appears on
both sides of the equality. This presents no problem because
SpectreHDL allows implicit formulations.

Table 3: Nonlinear Magnetic Core Module

module core(p,n) (len, area)
node [MMF,Wb] p, n;
parameter real len, area;

{

parameter
parameter
parameter

real
real
real

ms=1.6M from (0:inf);
a=1100 from (0:inf);
k=2000 from (0:inf);
parameter real alpha=l.6m from (0:inf);
parameter real ¢=0.2 from (0:17;
node [MMF,Wb] Hdot; // internal Hdot nodes
export real H, B; // flux intensity,density
real Manh, Mirr=(Q, dMirr, M, Heff, delta;
integer migrating; // pinning site flag

analog {

H = MMF (p,n) / len;

val (Hdot) <- dot(H);

delta = sign{(val (Hdot));

B = Wb(p)/area;

M = B/u0 - H;

Heff = H + alpha * M;

if (abs(Heff) > 0.001 * a)

Manh = ms * (coth(Heff/a) - a/Heff);
else

Manh = ms * Heff/(3.0%a);
dMirr = (Manh - Mirr)/(delta*k -

alpha* (Manh - Mirr)) * wval (Hdot);

migrating = (delta > 0) ~ (M > Manh);
Mirr = integ{ migrating * dMirr, Manh );
M = (l-c)*Mirr + c*Manh;
Wb (p,n) <- area*ul* (H+M);

There are a few aspects of this implementation that should
be explained. First, F = MMF(p,n) and ¢ = Wb (p) =
Wb (p, n). Second, to avoid division by zero in Equation 6
when H 4 is near zero, it is replaced by the first term in its
Taylor series expansion when /H g/ < 0/1000. The A operator
is the logical exclusive or operator, so migrating is true if & >
Oand M >M,,, orif & <0 and M < M_,,, (this clause was
included to define the relaxation from the loop tips back
toward the anhysteric to be fully reversible). Finally, integ
computes the time-integral of its first argument, and the
second argument specifies the initial value of the integral,

VI. RESULTS

The electromagnetic circuit in Figure 2 was simulated
using SpectreHDL with a sinusoidal excitation applied to the
primary winding and appropriate loads on the remaining
windings. The resulting input and output current waveforms
are shown in Figure 5. The electrical characteristics clearly
show the nonlinearity of the current s in the primary and
tertiary windings and the relatively linear response of the
secondary, due to the presence of the gap.

The magnetic flux density vs. field intensity displayed in
Figure 6 shows the initialization curve, starting from an
unmagnetized state, followed by the saturated (outer)
hysteresis loop. The sinusoidal input magnitude was then
linearly decreased with time to generate the remainder of the
minor loops shown in the figure.

=1 vanli,"R2")

13 vnn(y, "RLT)
Y 2 umndd, "time” )

4.0 a3 vonll, "R3a

e
FTAY

/ // [
§VARD AR VIS

N4
2.0 ; . x1073
0.0 1.0 2.0 time 3.0
Figure 5. Graph of Winding Currents vs. Time.
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Figure 6. Graph of B vs. H, Including Minor Loops.

VII. CONCLUSIONS

In this paper, we described a methodology for modeling
arbitrarily complex electromagnetic components by
combining primitive magnetic and electromagnetic elements.
In addition, an implementation of the complex Jiles-Atherton
core model was described. Several difficulties inherent in this
implementation were overcome. Transformation of the incre-
mental model into an integro-differential time domain
description provided a rational means for developing a
simulation model. The use of SpectreHDL significantly
simplified the actual implementation, due to its natural
handling of the implicit formulation of the model.
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