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Abstract — The principles employed in the develop- methods in layers to provide dramatic new capabilities.

ment of modern RF simulators are introduced and the The composite methods are divided into two groups. The
various techniques currently in use, or expected to be firstis based on a multidimensional representation of time.

in use in the next few years, are surveyed. Frequency- The second is based on sampling the RF signal and finding
and time-domain techniques are presented and con- its envelope. The paper concludes with comparisons of the
trasted, as are steady-state and envelope techniques methods.

and large- and small-signal techniques.
A. Narrowband Signals

. RF QrcuiTs RF circuits process narrowband signals in the form of

The increasing demand for low-cost mobile communicamodulated carriers. Modulated carriers are characterized
tion systems has greatly expanded the need for simulatiaas having a periodic high-frequency carrier signal and a
algorithms that are both efficient and accurate whenow-frequency modulation signal that acts on either the
applied to RF communication circuits. amplitude, phase, or frequency of the carrier. For example,

RF circuits have several unique characteristics that are ba#-tyPical cellular telephone transmission has a 10-30 kHz
riers to the application of traditional circuit simulation Medulation bandwidth riding on a 1-2 GHz carrier. In gen-
techniques. Over the last decade, researchers have dev@fdl: the modulation is arbitrary, though it is common to
oped many special purpose algorithms that overcomise simple periodic or quaS|per_|od|c_modulatlon_s con-
these barriers to provide practical simulation for RF cir-Structed from a small number of sinusoids for test signals.
cuits, often by exploiting the very characteristic that repreThe ratio between lowest frequency present in the modula-

sented the barrier to traditional methods. tion and the frequency of the carrier is a measure of the

Despite dramatic progress, the average design cycle of Lplative frequency r_esol_uti_on required of the simulation.

RFIC is still twice the length of that for other ICs found in G€neral purpose circuit simulators, such a8 use

a communication system, such as a cellular phone. Thigansient analysis to predict the nonlinear behavior of a cir-

represents a significant practical barrier to integration of Uit Transient analysis is inefficient when it is necessary

the RF and baseband sections of a transceiver onto a Sin%?eresolve low modulation frequencies in the presence of a
|

chip. Clearly, more progress is necessary. gh carrier frequency because the hfgdquency carrier

. . . . i forces a small time step while a low-frequency modulation
This paper is a overview of RF simulation methods that, ..o 4 long simulation interval.

seeks to provide an understanding of how the various

methods address the RF simulation problem, and how thy2SSing & narrowband signal though a nonlinear circuit
relate to each other. results in a broadband signal whose spectrum is relatively

) o ) o sparse, as shown in Figure 1. In general, this spectrum
It begins by describing the unique characteristics of RF

circuits. The basic solution methods of transient analysis,

harmonic balance, and shooting methods are presented

and contrasted. Small-signal analysis versions of both har-

monic balance and shooting methods are covered. Com- A A
fe 2f.

posite methods are next. These methods apply the base

A>f

Published in théroceedings of ICCAD’9MNovember 9-13, 1997 in San 3fc

Jose, California. Manuscript received August 11, 1997. Updated since

publication; updated last on November 20, 1998. Fig. 1. Spectrum of a narrowband signal centered at a carrier
This work was supported by the Defense Advanced Research Projeqtﬁequen(;yfC after passing though a nonlinear circuit.

Agency under the MAFET program.

K. Kundert can be reached via e-mail at kundert@cadence.com. consists of clusters of frequencies near the harmonics of



2 ICCAD’97

the carrier. These clusters take the form of a discrete set dbne by linearizing about the periodic operating point.
frequencies if the modulation is periodic or quasiperiodic,This is the idea behind the small-signal analyses of Section
and a continuous distribution of frequencies otherwise. 1ll. Traditional simulators such ase®&E provide several

RF simulators exploit the “sparse” nature of this spectrunimall-signal analyses, such as the AC and noise analyses,
in various ways and with varying degrees of succesdhat are considered essential whe_n ane_llyzmg amp_hﬁers
Steady-state methods are used when the spectrum is dfnd filters. However, they start by linearizing a nonlinear

crete, and transient methods are used when the SpeCtrumti[ge—invariant circuit about a constant operating point, and

continuous. SO generate a linear time-invariant representation, which
cannot exhibit frequency translation. By linearizing a non-

B. Time-Varying Linear Nature of the RF Signal Path  linear circuit about a periodically varying operating point,

. . .we extend small-signal analysis to circuits that must have

Another important but less appreciated aspect of RF cir- S )

cuits is that they are generally designed to be as linear g\sperlodlc timing signal present to operate properly, such

. ) : . as mixers, switched filters, samplers, and oscillators (for
possible from input to output to prevent distortion of the ™ . L : . .
i . . . L oscillators the timing signal is the desired output of the
modulationor information signal Some circuits, such as

. . : oscillator, while the information signal is generally an
mixers, are designed to translate signals from one fre- . . . . S
. undesired signal, such as the noise). In doing so, a periodi-
guency to another. To do so, they are driven by an addi- . . . .
: . N cally varying linear representation results, which does
tional signal, the LO, a large periodic signal the frequency _, - . .
) ._exhibit frequency translation.
of which equals the amount of frequency translation . _
desired. For best performance, mixers are designed ®ll of the traditional small-signal analyses can be
respond in a strongly nonlinear fashion to the LO. Thusgxtended in this manner, enabling a wide variety of appli-
mixers behave both near-linearly (to the input) andcations (some of which are described in [39,45]). In partic-
strongly nonlinearly (to the LO). ular, a noise analysis that accounts for noise folding and

Sincetiming or synchronizatiorsignals such as the LO or cyclostationary noise sources can be implemented [26,32],
gorsy 9 which fills a critically important need for RF circuits.

the clock, are not part of the path of the information signal . . .
: - \When applied to oscillators, it also accounts for phase
they may be considered to be part of the circuit rather than .
y T - . noise [3,12,13].
an input to the circuit. This simple change of perspective _ _ _ _
allows the mixer to be treated as having a single input anfihe linearity of the RF signal path can also be exploited to
a near-linear, though periodically time-varying, transferimprove the convergence of the methods, as will be pre-
function. As an example, consider a mixer made from agented later.
ideal multiplier and followed by a low-pass filter. A multi-
plier is nonlinear and has two inputs. Applying an LO sig-
nal of cog(w ot) consumes one input and results in aAt the high frequencies present in RF circuits, the passive
transfer function of components, such as transmission lines, spiral inductors,
Vou(t) = LPF{ cos(w ot)vi, (1)}, (1) paqkaggs (mcludl_ng bond wm_es) and supstra_\tes, often play
o _ _ _ _ _asignificant role in the behavior of the circuit. The nature
which is clearly time-varying and is easily shown to be lin-of such components often make them difficult to include in

C. Linear Passive Components

ear with respect tg,,. If the input signal is the simulation.
Vin(t) = m(t)cos(wt), (2 Generally the passive components are linear and are mod-
then e_Ied \_N_ith phasors irl the fr(_aqu_ency-domain. This greatly
o) = LPRM(cos0c)cos@Lo0} @) o B e er analytoal exprossions o
and tables of S-parameters. Large distributed structures, such
Vou(t) = m(1) cos((wc—wLo)t). @4 as packages, spirals, and substrates, often interface with

the rest of the circuit through a small number of ports.
This demonstrates that a linear periodically-varying transThus, they can be easily replaced Hy-port macromodel
fer function implements frequency translation. that consists of th&l2 transfer functions. These transfer

Often we can assume that the information signal is smaﬂmcnohnS ?;e fo_ubnd Ey reducing the I?rge_systerlns r?f equa-
enough to allow the use of a linear approximation of thd'°"S that oo eht ese Sfr“Ct“rhesf eaving on yt o e
circuit from its input to its output. Thus, a small-signaltlonS that relate the signals at their ports. The relatively

analysis can be performed, as long as it accounts for tHgpPensive reduction step is done once for each frequency

periodically varying nature of the signal path, which is@S @ preprocessing step. The resulting model is one that is
’ efficient to evaluate iN is small. This is usually true for
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transmission lines and spirals, and less often true for packhe solution space of the method contains only isolated
ages and substrates. solutions of the DAE.

Time-domain simulators are formulated to solve sets o'fA Transient Analysis

first-order ordinary-differential equations (ODE). How- "~

ever, distributed components, such as transmission line$ransient analysis breaks the time continuum into a series
are described with partial-differential equations (PDE) and®f adjacent short intervals and uses low-order polynomials
so are problematic for time-domain simulators. Generally2s the basis functions over each interval (the time step)
the PDEs are converted to a set of ODE using some fon\ﬁith the constraint that the solution must be continuous
of discretization [22]. Such approaches suffer from bandacross interval boundaries (the time points). For example,
width limits. A more general approach is to compute theconsider the nonlinear DAE

impulse response for a c_iistributed componen_t from a fre- FV(t), 1) = i(v(t) + dg(v(9) fu(t) = 0. )
guency domain description and use convolution to deter- dt

mine the response of the component in the circuit [11’341\N
Evaluating lossy or dispersive transmission line models o ime-invariant nonlinear system, it is convenient to think

tables of S-parameters with this approach is generallgf it as being generated from nodal analysis, and so repre-

expensive and error-prone [36]. Packages, substrates ad nting a statement of Kirchhoff’s Current Law for a cir-

spwsls catm be moc:ele:j W|thtlat;ge Ifl;_m_pesl n_etworks, ?uéuit containing nonlinear conductors, nonlinear capacitors,
such systems are 1oo arge fo be etmciently INCorporated, y ¢, rrent sources. In this caséf) ORN is the node

into a time domain simulation, and so some form of reduc\’/oltage, i(v(t)) ORN represents the current out of the
tion is necessary [6,28].

node from the conductorg(v(t)) represents the charge out
of the node from the capacitors, and) represents the

) o current out of the node from the sources.
If we ignore distributed components for the moment, the

basic idea behind circuit simulation is to solve a nonlineaﬁOnSIder trapei‘mdar: rulei I_h's IS 3§tecfc_)n?-grd_er ?ethod
set of differential-algebraic equations (DAES). We start b at assumes th a_t the s:)bu |or:jar_1 : SA Irs her;;]/a ve alrg
proposing the form of the solution as a linear combinatioff@NtinUoUs at the interval boundaries. As such, they wou

of basis functions. A primary requirement of the basisbe known at the start of the interval from the solution of
functions is that we must know their derivatives. Thisthe previous interval. With a small amount of algebra, one

allows us to analytically evaluate the derivatives in thesan show that ifs_, Is the initial point in the intervals is

DAE, thereby converting the DAE to a system of nonlineafe final point, andhs = ts ~ts 4, then for a second-order
algebraic equations that can be solved with Newton'®°lynomial,

method. Examples of possible basis functions are polyno—dQ(V( 19)) _ 2 do(\(§_1)) 6
mials and sinusoids. The efficiency and accuracy of the dt h_s(q(v(ts)) —AME ) =g ©)
simulation is dependent on the choice of basis functions. A

careful choice of basis functions can result in tremendoustPstituting (6) into (5) converts it into a sequence of non-
performance advantages. linear algebraic systems of equations that can be solved

. ) ) ) ) with Newton’s method to build up a pointwise approxima-
The choice of basis functions defines the solution SPaCkyn to the solution from some initial state.

for the method. Note that this space may not contain good . N o i

approximations to all of the solutions to the original DAE’Under certain mild c_ondltlons, itis poss,lbl_e to sh_ow that
in which case the method based on that choice of basf€Wton's method will converge at every time point of a
functions will not be able to find those solutions. This istransient analysis. Newton’s method is an iterative proce-
used to advantage to avoid particular solutions that argure that converges to the solution of a nonlinear system of
either uninteresting or undesirable. For example, if th&€duationsif the initial starting point is close to the final
basis functions are chosen to be sinusoids, then onf§Plution. As long as the solution trajectory for the DAE is
steady-state behavior is representable and so the initigPntinuous, which it must be except at a set of distinct

transient behavior is avoided. Furthermore, the circuit caROiNts (in particular, at jump or catastrophe points, which
be simulated even if it is unstable. are rare), and if the starting point used for the Newton iter-

ation is an extrapolation from the values at previous time

The other way to avoid undesired solutions is t0 apply,,ints then one can always take a time step small enough
constraints on the solution in the form of initial or bound-for Newton’s method to converge.

ary conditions. In general, DAEs have an infinite contin-
uum of solutions, and so constraints must be applied
before they can be solved for a particular solution unless

hile this equation is capable of modeling any lumped

Il. NUMERICAL SOLUTION OF DAES
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B. Harmonic Balance where=(V), 1(V), Q(V), V, U0 CK+DN are vectors of

Harmonic balance [17,23,29] uses harmonically related/©ctors. Each is composedgivectors that represent the
sinusoids for basis functions. As noted earlier, such basRPectrum at each nod&,Y  are block matri€ess
functions cannot represent the initial transient, so har?l0ck diagonal and

monic balance directly computes the steady-state behavior nn = diag{—jwy, ..., 0, ..., juy (13)

of the circuit. is the frequency-domain differentiation operator and

For simplicity, we will use phasors (complex ex_ponentials)_j = /1. Y is the Laplace transform of,, evaluated
as basis functions rather than sines and cosines. We Wat]&)k for eachk. It is diagonal because the components
also treat the time-domain signals as being complex vaimodeled byy are time-invariant.

ued and S_"T‘p'y \ghore the imaginary parts. Wh”.e this i While it is possible to model some types of nonlinearities
not as efficient as if we assumed real-valued signals, i

. ; : SN irectly in the frequency domain [37], this is not practical
results in a simpler presentation. For more efficient imple- . ; :

. or desirable in all cases. Instead, a procedure is employed
mentations, see [17,20,30].

_ _ _ _ whereV is first converted into the time domain at evenly
With phasors as basis functions, harmonic balance hasspaced sample points using the Inverse Discrete Fourier
natural ability to incorporate the frequency-domainTransform (IDFT),

descriptions of distributed components. Thus, we formu- n

Ia_lte a new test problem that is similar to (5), excc_ept that the x(9) = 1 Z X(K)ei2ks’ S (14)
signals are complex valued and another term is added to K

model distributed components. In addition, we assume that k=K _
the circuit is driven (i.e. that(t) is not constant). wheres=0, 1,...,.5-1 and Sz §;, = 2K+ 1 . WhileS

t may be set equal &, typically it is chosen in the range
i(v(t)) + dq(v(9) + Iy(t—r)v(t)dr +u(t) = 0 (7) ZSmin_ < S< 105, to reduce aliasing. For each time point,
dt = bothi(v(tg) andq(v(ty)) are evaluated whetg= sT/S, and
the result converted back into the frequency domain using

or the forward Discrete Fourier Transform (DFT),
f(v,t) = 0, (8) v
wherev(t), u(t), y(t), i(v(t)), g(v(t)), and f(v, t) O CN w(t) X(k) = Z X(s)e12mks/ S, (15)
andu(t) are assumed to Bieperiodic,y(t) is the impulse s=0
response of the linear components, whidq now rep-  goth the DFT and the IDFT can be written a matrix opera-
resent only the nonlinear components. tions [17]:
Harmonic balance assumes that bo#ndf of (8) are for- X=Fx, (16)
mulated as Fourier series, x=F X, (17)
_ ot whereF represents the DFT arfd~* of represents the
x() = Z (e, ©) IDFT. (16) is a restatement of (15) and (17) is a restate-
k = —oo ment of (14). IfS> §,,;,, these matrices are not square.
wherewy, = kA and\ = 2r/T is the fundamental frequency. Now
Now (8) is rewritten as v=1[v] = [F—lvn] , (18)
Z F(V, k)9 = 0, (10) (V) = Fi(v), (19)

k = —oc0 Qm(v) = qu(v) . (20)

where Applying Newton-Raphson to solve (12) results in the iter-
F(V,K) = jo,Q(V, K +1(V,k) + Y(KV(K) +U(k) (11)  ation
: . L ~
Sincee 4 ande’ 2 are linearly independent ki # k, IV VD - VD) = —F(v(), (21)
F(V, k) = 0 for eachk individually. To make the problem wherer is the iteration number and
numerically tractable, it is necessary to consider only the AF(V) _ al(V) 0Q(V)
first K harmonics. Then, in vector form, IV) = =y~ = 3v TQ v Y (22)
F(V) = I(V)+QQ(V)+YV+U=0, (12)

is theharmonic Jacobian
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izing about the DC operating point and performing a sim-

JV) = [,V = FZT/(V)} , (23) ple _AC analysis at egochk is an t_effective am_j efficient
n choice [9,21,40]. In this cas@, s the Jacobian generated
by the Gauss-Jacobi-Newton harmonic relaxation algo-
where rithm [17]. This preconditioner is not sufficient for
OF (V) _ 0l ,(V) 0Qy(V) Ly o4 strongly nonlinear problems. To handle these problems, it
ov, - ov, mm 9V, mn (24) is necessary to adaptively prune the full harmonic Jaco-

is aconversion matrixThe derivation obl (V)/dV, fol-
lows from the chain rule.

bian as in the harmonic-relaxation Newton algorithm
[17,20].

When using the matrix-implicit methods, harmonic bal-

Im(V) = Fin(v) (25) ance requires roughl®(NK) operations, whires the
N (V) 0i (V) v, number of circuit equations andis the number of fre-
v - T Tav v (26)  quencies required to accurately represent bathdf. This
: nor does not include the operations required to precondition
Sincei(v) is algebraicgi,/dv, is diagonal. the system of equations, which on strongly nonlinear prob-
3i (V) _ lem may be far from negligible.
v = diag{ gy (v(t))}, (27)

n

whereg,,(V(1)) = i, (v(t))/dv,(t) is the conductance

ExtensionsAn extremely important application of har-
monic balance is determining the steady-state behavior of

oscillators. However, as presented, harmonic balance is
not suitable for autonomous circuits such as oscillators.
The method was derived assuming the circuit was driven,
which made it possible to know the operating frequency in

advance. Instead, it is necessary to modify harmonic bal-
ance to directly compute the operating frequency [17].

waveform for the nonlinear resistors.
Fromv, = F1v,_ ,
al (V) _
ov,

di (V)

-1
-

(28)

0Q,/ 0V, is derived and constructed frazp,,in a simi-
lar manner, where,(v(t)) = dq,,(v(1))/dv,(t) isthe

' \ ’ Applications:Harmonic balance is generally used to pre-
capacitance waveform for the nonlinear capacitors.

dict the distortion of RF circuits. It is also used to compute
the operating point about which small-signal analyses are

erformed (presented later). When applied to oscillators, it

((azxf)enrﬁglt?i:(c-)iriltolrieci?rr;dezag?sr.;—rc()e re::gelah;ggztrzf fr? I\gr\p used to predict the operating frequency and power, and
' P used. €N00S an also be used to determine how changes in the load

only the com_pone_nt pleces of the Qacobga,rm,(andY) are  affect these characteristics (load pull).
stored and iterative linear equation solvers such as the

Krylov-subspace methods [33] are employed. These methts space of application is similar to that of shooting meth-

ods solve this linear system of equations by evaluating 8ds (presented next). It is preferred over shooting methods
sequence of matrix-vector products (MVP) that involvewhen the circuit includes distributed components.

the Jacobian. The MVPs can be evaluated with nearly lin- )

ear time and storage by exploiting the structure of (28) ang' Shooting Methods

by using fast algorithms such as the FFT to implenkent Transient analysis solves initial-value problems. A shoot-

andF ~1 [21]. Unfortunately, these iterative linear solversing method is an iterative procedure layered on top of tran-
are not guaranteed to converge and require the use ofséent analysis that is designed to solve boundary-value
preconditioner to improve their convergence. The originaproblems. Boundary-value problems play an important

linear system of equations role in RF simulation. For example, assume that (5) is

Efficiency: J(V) is big and relatively dense, and so

AX=Db (29) driven with a non-constantperiodic stimulus. Th&-
. . ltiolvi . ~1 periodic steady state solution is the one that also satisfies
is preconditioned by multiplying both sides By - Oney o two-point boundary constraint,

tgﬁ]n applies the iterative solver to the preconditioned sys- v(T) —v(0) = 0. (31)

If the initial statev(ty) is known, then transient analysis

30
. (30) can solve (5) and compute the state as some latetttime
Generally, the preconditionek  is chosen to be a closg, general, one writes

approximation toA that is also easy to invert. For mildly V(t)) = V(to) + @(v(ty), to t;)
nonlinear problems, constructig = J(Vpc) by linear- ! 0 0r oL

Atax = A'b.

(32)
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whereg@ is the state transition function for the differential andhg = ty—t5_ ;. A natural preconditioner is applied sim-

equation. Shooting methods reformulate (5) and (31) as ply by saving and applying in LU factored form [40].
@(v(0),0) = 0, (33)  This preconditioner has proven itself to be extremely

robust.

Whefe(pT(v(tO), ty = o(V(ty), to, T+ ) ,which is a non-

linear algebraic problem and so standard Newton methodSonvergenceNewton’s method is applied both in the

can be used to solve fo(0). We refer to the combination outer loop to solve (33) and in the inner loop to solve (5) at

of the Newton and shooting methods as the shooting-Neweach time point, making this a multi-level Newton method.

ton algorithm. As described before, the ability to adjust the time step dur-

When applying Newton's method directly to (33), it is necing transient_ analysis re_sults in Newton’s method_ being
essary to compute both the response of the circuit over off&tremely reliable in the inner loop. The outer loop is also
period and the sensitivity of the final stat€T) with quite reliable l_:)ecz_ausparls_ generally near I_mear as a direct

respect to changes in the initial staf@). The sensitivity result_of RF circuits having near linear S|gnal paths._Thus,
is used to determine how to correct the initial state t¢h00ting-Newton represents a well-designed multi-level

reduce the difference between the initial and final state. Néwton method where the inner loop is robust and shields
the outer loop from the nonlinearity inherent in the prob-

Applying Newton's method to (33) results in the iteration |5,

() _ (r-1) (r-1) -1 (r-1) (r=

In' =V, —[J (v, -1 Y ,0)—v

0 0 [ (p( o )1 el ) =Vo &‘]4) ExtensionsAs with harmonic balance, it is extremely
wherer is the iteration numbery = v(0), 1 is the identity important to be able to determine the steady-state behavior

matrix, and of oscillators. To do so it is necessary to modify shooting
3 (v) = de;(vp, 0) _dv(T) (35) methods to directly compute the period of the oscillator
eU0T T dyy T dyg [17].

There are two important pieces to the computation of théPplications:Shooting methods are applied in the same
Newton iteration given in (34): evaluating the state-transiSituations as harmonic balance. It is generally preferred if
tion functiong(vg, 0) , and forming and factoring the the circuit is driven with strongly discontinuous signals

matrix J,(V,) , which is a dense matrix in general. (pulses as opposed to sinusoids). As such, shooting meth-
¢ ods are well suited for simulating switching mixers,

The state-transition function is computed by integrating, i-he( filters, samplers, frequency dividers, and relax-
(5) numerically over the shooting interval. The derivative yii, oscillators as long as the circuits do not contain dis-

pf the statg-transmon fun_ctlon, referred to as the Sensitiviip ited components.
ity matrix, is computed simultaneously because there are
several quantities that are common to both computations . SMALL -SIGNAL ANALYSIS

1,17,38,40]. . o . . -
[ ] Consider a circuit whose input is the sum of two periodic

Efficiency:FormingJ,, requiresO(N2S) operations where ~ Signalsu(t) =u (t) + ug(t), whereu (t) is an arbitrary peri-
Sis the number of time points used to evalugteFactor- ~ 0dic waveform with period andu(t) is a sinusoidal
ing ‘J(p_l requiresO(N3) operations. As a result, forming waveform of radial frequencgg whose amplitude is
and factoring)_—1 becomes intractable witexceeds Small.

several hundred. As with harmonic balance, matrix-_et v, (t) be the steady-state solution waveform whgt
implicit Krylov-subspace methods are used to avoid formis zero. Then allowg(t) to be small, but nonzero. We can
ing and factoringl ,—1 [38]. Again, the component consider the new solutior(t) to be a perturbation(t) on
pieces of) ,—1 are saved and the matrix-vector products, (t), as inv(t) = v, (t) + vg(t). The small-signal solution

are performed on the fly. The component pieces are vg(t) is computed by linearizing the circuit abay(t) and
C(v(ty) applying one of the methods for finding the steady-state
H(V(t) = GU() + — (36)  solution already described. From the theory of periodically
S time-varying systems [5,43], it is known that for
andC(v(t)) ateach time poistwhere u(t) = U ot (39)
G(v() = LD 37) onse ks d
dv(t) ’ the steady-state response is given by

C(v(p) = dg(v\z(t)t)) , (38)
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@ A. Transient Small-Signal Analysis
‘ kMt .
(1) = Z \/S(k)e](ws+ " (40)  Though beyond the scope of this paper, there has been
K=—w recent progress on performing small-signal noise analysis

about a transient operating point [3]. However, in most

Vg(K) represents the sideband for wieharmonic oM. In cases, itis the snjall-s_ignal behav_ior when the circuit is in
this situation, there is only one sideband per harmoni&i€ady state that is of interest. Using these methods gener-
becauseJs is a single frequency complex exponential andaIIy requires integrating through any initial transient.

the circuit is linear. This representation has terms at negas
tive frequencies. If these terms are mapped to positive fre-’
quencies, then the sidebands whtk 0 become lower Consider (12) where) = U + UgandV =V, + Vg Ini-
sidebands of the harmonics gf and those wittk > 0 tially setUs= 0 and solve (12) fov| such that

become upper sidebands. F(V) = (V) +QQ(V) +YV +U =0. (41

Vg(K)/Ug is the transfer function for the input @t to the SinceUs is expected to be small, we can expand abput
output atwg + kA. Notice that with periodically-varying using a Taylor series truncated to first order.

linear systems there are an infinite number of transfer (V)

functions between any particular input and output. Each Yv.+0 9Q(V)
represents a different frequency translation. A S oV

wherel = 21T is the large signal fundamental frequency.

Harmonic Balance Small-Signal Analysis

Ve+ YV +U =0 (42)

Extensionsin the next few sections, the basic techniquesOr

are introduced that are used to compute the small-signal J(VVs=-Ug (43)
stea_dy state response of a c_|rcwt _Ilpearlzed about_a t'"\ﬁhereJ(VL) is computed as in (22) ar® is as in (13)
varying operating point. This is sufficient for performing a ; —

: . . except withwy, = wg + KA.

time-varying AC analysis and can be extended to other ) _

types of small-signal analyses, such as computing the $0Iving (43) forVs gives the sidebands generated.ky
parameters of the circuit. These small-signal analyses amhese ideas are extended to cyclostationary noise analysis
also extendable to cyclostationary noise analysis [3,7]in [10,12,32].

which is an extremely important capability for RF design-

ers [39]. C. Shooting Method Small-Signal Analysis

These methods can also be extended so as to allowGonsider the circuit described by (5). Assung@) = 0 and

small-signal analysis about a quasiperiodic operating poirlet v, (t) be the resulting solution that also satisfies the two-

or small-signal analysis of autonomous circuits. point constraint (31). Linearizing (5) aboyt(t) yields a
time-varying linear system

Applications:Small-signal analyses are tremendously use-  dC( v (1))

ful for computing transfer functions (such as conversion — ————Vt) + G (D)v{) +uy(t) = 0 (44)

gain and supply rejection) and predicting noise perfor-

mance. In this way, they are similar to the AC and nois¢hat can be solved fox(t) if ug(t) is small.

analyses in BICE, but they can be applied to all kinds of From (40) it follows that

circuits that the traditional small-signal analyses cannot, T

such as mixers, switched-filters, and samplers. Because Ve(t+ Ty ) = vs(t)e’ st (45)

they compute transfer functions in t_he presence of I_argEquation (45) in the periodically time-varying linear

signals, they can be used to determine the degradation gfe4qy-state problem is analogous to (31) in the standard

gain and noise when there is a large interfering signal 08, qy.state problem. It is solved using a modified shoot-

an adjacent channel. They can also be used to estimaify nethod [25,41]. Note that (45) implies that the entire

intermodulation distortion [39]. small-signal steady-state response of the periodic time-

When performing noise analysis, they accurately capturearying system is determined by the behaviovgt) on

noise folding present in all circuits that have time-varyingany interval of lengtfT, .

operating points, but which is especigl_ly important in mix-Since the solution is computed by performing a time-

ers, samplers, and osu_llators. In_addltlon, they can be “S%Q)main simulation, there is an upper bound on the analysis

to predict the phase noise of oscillators. frequency that is imposed by the largest time step used.
The period of analysis frequency must be much larger than
the largest time step. Typically, the time steps are the same
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ones used when computing the large signal operatingenerating quasiperiodic (also known as polyperiodic) sig-

point. nals. Quasiperiodic signals have the form of a Fourier
Standard shooting methods can be used if we formgeries that is generalized in that the frequencies of the
x(t) = v (t)e—jwst Then, (45) becomes sinusoids are not just integer multiples of a single funda-
S S . 1 - . -
mental frequency. Instead, they are the linear combination
X(t+T)) = xg(t), (46) ey 4

of integer multiples of several fundamentals. For example,
which is the same form as (31)ti 0. Now conventional if there are two fundamentals, then

s_hootlng m_ethods_are ap_phed to_ﬂxngnce knqwn, Fpu- B oA + koAt

rier analysis [18] is applied to find,, from whichV, is X(1) = Z Z X(ky, kpye et Tt (5])
trivially computed. This is a different, but equivalent, way
of deriving the method given in [25,41].

k, = =0 k, = —o0
wherel; andA, are the fundamental frequencies.
This procedure is applied to cyclostationary noise analysi

in [26,41]. sf‘he response contains components at multiples of each

fundamental frequency as well as at the sums and differ-
V. MULTI-VARIATE METHODS ences_of thesg freque_ncies. Rearranging (51) allows us to
i i i see this as being equivalent to constructing the waveform
An interesting approach to solving narrowband problems,q 5 conventional Fourier series where the sinusoidal fre-
uses anulti-variaterepresentation of the signals and refor-quencies are at integer multipleshaf except that the Fou-
mulates (5) as a partial-differential equation. Consider gig coefficients themselves are time-varying. In particular,
simple two-tone quasiperiodic signal the coefficientX(t, k;) is periodic with perioB, = 217\,

X(t) = cos(w;t)cos(w,t) , (47)  and can itself be represented as a Fourier sertgs in

9
wherew; is much smaller thaw,. A large number of time _ koAt jkoAqt
points would be needed to accurately approximate such a (1) = Z Z X(ky, k2)e‘ ¢ (52)
signal. For example, if 15 points per period were needed to ky = —o D%zm_% A

accurately represent the highest frequency, and, if X(t k)

1000w, then 15,000 points are needed to accurately rep- '

resentx(t). Now consider a bi-variate representationConvert to a bi-variate representation by associatjng

obtained by replacingwith t; in the slowly varying parts with A; andt, with A,.

of the expression, artdvith t, in the rapidly varying parts. . .

Then R(ty,ty) = Z Z X(ky, kz)e]kz)‘ZtZe]kl)‘ltl (53)
X(ty, ty) = cos(w;ty)cos(w,t,). (48) K. = —o K, = —oo

x(t) is easily recovered from(t,, t,)  simply by setting This is a two-dimensi(_)nal F_ourier ser?es, andkso and
t; = t,. In this case, a grid 0i5x 15 = 225 points are &€ related by a two-dimensional Fourier transform.

needed to accurately represé(t,, t,) . Assumingv andf of (50) take the form of (53) (a linear
Using these ideas, we can replace (5) with combm_atlon of periodically AM modulated sinusoids)

¥ 0y results in
9q(U(ty, ) 9a(¥ty, 1)) O L) + Ot L) 449)

12 12 N o

atl atz Z Z F(V, kl, kz)el 1 ltl+J 2 2t2 — O, (54)

or k1 = —00 kr; = —00
f(U(ty, 1), ty, 1) = 0. (50) Where |

. . _ F(V, kyy ko) = J(kgA g + kA Q(V, ki, ko) + (55)

A wide variety of methods are formulated from this equa- 1V, g, ky) + UKy, ko)

tion by proposing different forms of the solution and dif-

ferent boundary conditions along each time axis. One cafs with periodic harmonic balance, the terms in (54) are
apply transient, harmonic balance, and shooting methodiearly independent, si&(V, ki, kp) = 0 for eachky, k. In

in layers and customize methods to particular classes ¢®ctor form,

problems [2,31]. F(V) = (V) +QQ(V)+U = 0, (56)

whereQ is generalized such thal = kjA1 + koA, This
becomes finite-dimensional by boundi | <K . This is

If a circuit is driven with two signals at unrelated funda-gimjjar to (12), except the term for the distributed linear
mental frequencies, it generally responds in steady state by

A. Quasiperiodic Harmonic Balance
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componentsYV) is missing. This term can be included in B. Circuit Envelope Method
(56) without difficulty because the spectrum\bfs dis-
crete. When evaluating andQ the multidimensional dis-
crete Fourier transform is used.

In the last section, the concept of harmonic balance with
time-varying Fourier coefficients was introduced. In that
case, the Fourier coefficients were assumed to be periodic,
Using a multidimensional Fourier transform is just onewith the result that signals themselves were quasiperiodic.
way of formulating harmonic balance for quasiperiodicWith circuit envelope [24,35], the Fourier coefficients are
problems. It is used here because of its simple derivatioagain time varying, but are not necessarily periodic.
and because it represents an early application of multinstead, the Fourier coefficien¥(t, k)  are taken to be
variate methods [30,46]. An alternate approach that is gertransient waveforms. Thus, signals take the form

erally preferred in practice is the false frequency method, « .
which is based on a one-dimensional Fourier transform x(t) = Z i(tl, k)e]wktz, (57)
[8,17].

k=—-o

Parametric Harmonic Balancédarmonic balance as Wwherewy, = kA andA is the fundamental frequency of the

described above exploits the sparse spectrum of modulat®@se Fourier serieX(t;, k)  represents the complex mod-

carrier signals and the linear nature of the passive compgiation of thek!™ harmonic.

nents. However, it Only inCidenta”y eXpIOitS the nature OfNOW, (50) can be rewritten in the form of (57),

RF circuits to respond in a near-linear manner to the input w

signal (more effective preconditioner, fewer Newton itera- Y joyty, —

tions). Parametric harmonic balance [42] is a variation that Z FV(ty). 4, e 0 (58)

retains the advantages of standard harmonic balance, but (=

also exploits the near-linear nature of quasiperiodic RWhere

circuits in a more deliberate manner. It splits harmonic~ N dé(V(tl), K) o

balance into two phases, one to compute the responsept@v(tl), t;, k) = —r +jw, Q(V(ty), k) + (59)

the large periodic drive signal alone (ex., the LO in a

mixer), and a second phase computes the response from

the input as a perturbation of the solution computed in the

i i i i jop t, . joy t .

e o oo oot e cooyeBecaused s ineany ndependemdf™®* i

gence is a struggle. In addition, information generated ir|1(2’ and beca_usE(V(t_l), ty k) is independentgfeach

the first phase can be used to a,ccelerate the second phatgém In (58) is zero independently Of. the others. In other
. . - S words, F(V(t),t, k) = 0 for eack, or in vector form

In this regard, parametric harmonic balance is similar to .

several of the methods presented later. Unfortunately, furf i), t) = dQ(vV(®)) , QO(V(t)) +1(V(1) + U(t) ®0)

ther description of this method is beyond the scope of this dt

article. As with transient analysis, discretization methods such as

trapezoidal rule or the backward difference formulae

ExtensionsOne obvious extension is to allow more than rep|acedQ/dtW|th a finite-difference approximation, con-

two fundamentals, though the method becomes expensigrting (60) to a system of nonlinear algebraic equations

fast as the number of fundamentals increases, so in pragrat is solved with Newton’s method. For example, apply-

tice only two or three fundamentals are used. Anothejng backward Euler converts (60) to

important extension would be to support autonomous orx =

semi-autonomous circuits [46]. An example of an autono—Q(V(ts))_Q(V(ts‘l))

mous quasiperiodic circuit is one that consists of two cou- ts—1ls 1

pled oscillators. An example of an semi-autonomous (61)

circuit is a free-running oscillator connected to & MiXerone of the important strengths of harmonic balance is its
with a driven input. ability to easily incorporate frequency-domain models for

L L . ) the linear components such as lossy or dispersive trans-
Applications:Quasiperiodic harmonic balance is used pre-

N ) . . S mission lines. Unfortunately, this is not true with the cir-
dict intermodulation distortion of narrowband circuits and

both h . qi dulation di _ £ mi cuit envelope method. The transient nature of the
oth harmonic and intermodulation distortion o m'xers_'modulationsV(t, k) introduces the same difficulties that

B.Oth It a_nd the mixed fr_equ_enc_:y-tlme m(_athod are u_sed Bre present with distributed components in transient analy-
similar situations. Quasiperiodic harmonic balance is P'€3is. which are addressed using similar techniques. In par-

ferred when the circuit includes distributed components. ticular, one can use convolution [11,34], or the model for

T(V(ty), k) + U(ty, k)

+QQ(V(t)) +T(V(t) +U(t) = 0
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the distributed component can be separated into delay atachd then power down. If it powers up and down too slowly,
dispersion, with the dispersion being replaced by a lumpethe transmitter does not work properly. If it powers up and
approximation [36]. down too quickly, the resulting spectrum will be too wide

As the distributed components are linear, the sidebands & fit in the allotted channel. Simulating with traditional
each harmoni& can be treated individually. Thus, a sepa-transient analysis would be prohibitively expensive
rate model is generated for each harménighich greatly bec:_:tuse the time _sllce _Iasts on the order of 100 ms and the
reduces the bandwidth requirements on the models. THE'Ter frequency is typically at 1 GHz or greater.

model for each harmonic must only be valid over theThe capabilities of circuit envelope are similar to envelope
bandwidth of the sidebands associated with that harmoni¢ollowing (presented next). Circuit envelope is preferred
In RF circuits, the bandwidths of the sidebands are usuallywhen the circuit contains distributed components.

small relative to the carrier frequency, and so generating

models of distributed components for use in the circuit V. SAMPLING METHODS

envelope method is much easier than for conventionakFr circuits are generally influenced by one periodic tim-
transient analysis. In fact, it is not uncommon for the bandi-ng signal, often referred to as the LO or the clock, and one
width of an RF circuit to be so small that the transfer funcor more information signals. For oscillators, the timing
tion of a distributed component does not changssignal is the oscillation signal itself and the information
appreciably over the bandwidth of the sidebands. In thisjgnal is generally noise. With sampling methods, we des-
case, the transfer function is taken to be constant. In oth@jnate the one timing signal as tbleck If there is more
words, Yy, K) is simply replaced witl,,{cy, K) where  than one timing signal, then usually the largest and fastest
W = 0y + Ow is chosen to be the clock. The discrete sample-envelope for
) ) o a signalx is defined as signai.,, that results wher is
ExtensionsOne can build circuit envelope on top of & gy mpjed with a period equal to that of the clock, as shown
quasiperiodic harmonic balance rather than on top of periy Figyre 2. The continuous sample-envelope is the trajec-
odic harmonic balance as has been done here. One Cgf)y that is traced out if the phase of both the clock and the
also build it on top of autonomous harmonic balance. g5 mpjing is allowed to drift relative to the other signals
One can also wrap shooting around circuit envelope to fingresent. The sampling is assumed to always occur at the
a periodic or quasiperiodic modulation waveform, whichsame phase of the clock.
results the multi-variate mixed frequency-time method

[31]. Y ’/—Sample Envelope

Applications:Circuit envelope has two primary applica-
tions. The first is predicting the response of a circuit when
it is driven with a complex digital modulation. An impor-
tant problem is to determine the interchannel interference
that results from intermodulation distortion. Simple inter-
modulation tests involving a small number of sinusoids as
can be performed with quasiperiodic harmonic balance is
not a good indicator of how the nonlinearity of the circuitThe sample-envelope methods apply shooting methods
couples digitally modulated signals between adjacen@ver one or more clock cycles using boundary conditions
channels. Instead, one must apply the digital modulatiorthat are formulated based on assumptions about the sample
simulate with circuit envelope, and then determine how thé€nvelope. One can apply a wide variety of constraints on
modulation spectrum spreads into adjacent channels. ~ the sampled envelope, which results in a plethora of meth-

Another important application of circuit envelope is to pre-OdS' For exa’?‘p"?’ assumlng_the s_ampled gnv_elope IS con-
stant results in simple shooting with a periodic boundary

dict the long term transient behavior of certain RF circuits.constraint Assuming the circuit is linear and the sample
Examples include the turn-on behavior of OSCiII‘fjuors’envelo e ié sinusoidgl results in periodic small-signal anpal
power supply droop or thermal transients in power ampli- P P 9

fiers, and the capture and lock behavior of phase-locke&S'S' However, more interesting methods result when we

loops. Another important example is determining the turn-make different assumptions about the sample envelope.

on and turn-off behavior of TDMA transmitters. In TDMA A

(time-division multiple access), transmitters broadcast ) .
during a narrow slice of time. During that interval the ENvelope Following approximates the sample envelope as

transmitter must power up, stabilize, send the messag®,Piecewise polynomial [15,27] in a manner that is analo-
gous to conventional transient analysis. This approach is

Fig. 2. Sample envelope is the waveform traced out when
signal is sampled with a period equal to that of the clock.

. Envelope Following
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efficient if the sequence formed by sampling the state dtourier coefficients can be determined using the DFT, and

the beginning of each clock cych0), v(T), v(2T), ...,  then the resulting Fourier series can be evaluated to deter-
v(mT), changes slowly as a functionmof A “differential-  mine the value of any point. In particular, let
like” equatloAn |(s ch))rmed fr(or: (31‘)2) . ) /o = [V(ty), V(ty), ..., V(tg) (64)
v(mT) = viml), ml),
or be the value 08 points, then we can find the value of e
where Av(mT) = v((m+ 1)T) —v(mT) is a measure of points that follow them by one cycle,
the time-derivative of the sample envelopendt We can Vo = [V(t + T), V(L) + T), .y V(g + T (65)

apply traditional integration methods to compute an

approximation to the solution using a procedure thaSince the DFT is a linear operaférthere exists a linear
involves solving (62) at isolated time points. If the sampleoperatorD; = F~1e/®'F  that mapé, to V.

envelope is accurately approximated by a low-order poly- Vi = D{Vq (66)
nomial, then this procedure should allow us to skip many

cycles, and so find the solution over a vast number of his isSNequations with 8N unknowns. They were for-
cycles in an efficient manner. For RF circuits, (62) is stiffmulated purely from the constraints on the sample enve-
and so requires implicit integration methods such as trapdope. It represents a boundary condition on solution to (5)

zoidal rule, which can be written as in a way analogous to (31) and (45). Desigrifeas the
2 collection ofS state transition functions froig to tg+T.

Av(mT) =y (v(mT) =v((m=)T)) -Av((m=DT), (63)  Then

wherel is the time step, which is measured in terms of V1 = @r(Vo) (67)

cycles. This equation represents a 2-point boundary compplying (66) to (67) gives

straint on (62), and so together they can be solved with D Vy- (Vg = 0 (68)

shooting-Newton methods to findmT). As with transient TR ’

analysis, once(mT) is computed, it is necessary to checkwhich can be solved using Newton’s method ¥er As

that the trajectory is following the low-order polynomial pointed out earlier, frory one can calculate any point on

as assumed. If not, the point should be discarded and tllee sample envelope. Any pow(t) on the original wave-

stepl should be reduced. If desired, other integrationform is found by integrating (5) from the appropriate point
methods can be used, such as the backward-difference fan the sample envelope.

mulae.
ExtensionsAs with quasiperiodic harmonic balance, the

ExtensionsEnvelope following can be extended to sup-mixed frequency-time method can be extended to an arbi-
port autonomous circuits such as oscillators. trary number of fundamentals, though in practice is lim-

One can wrap shooting around envelope following to findt€d t0 two or three. It can also be extended to handle
a periodic or quasiperiodic envelope, which results th@UtoNomous and semi-autonomous circuits.

hierarchical shooting method [31] Applications:The applications of the mixed frequency-

Applications:The applications of envelope following are ime method are the same as quasiperiodic harmonic bal-
the same as circuit envelope. Envelope following is pre@nce- The mixed frequency-time method is preferred when
ferred when the carrier signal is strongly discontinuoudn€ carrier signal is strongly discontinuous (consists of

(consists of pulses rather than sinusoids). As such, envBYISes rather than sinusoids).

lope following is suitable for simulating switched filters

L S o . VI. COMPARISONS
and switching power supplies in addition to the traditional C

RFE circuits. The methods presented can be grouped into two broad
families, those methods based on harmonic balance, and
B. Mixed Frequency-Time Method those based on shooting methods. Table | shows how the

The Mixed Frequency-Time (or MFT) Method [16,17] various methods are related. to baseband methods, and to

makes the assumption that the sample envelope can £8ch other.

accurately approximated by a Fourier series \Witerms  Most of the differences between the methods emanate
(excluding DC), wher& is presumed to be small. If true, from the attributes of the base methods (harmonic balance
then once the value &= 2K+1 distinct points along the and shooting methods). So only the base methods will be
sample envelope are known, then all points can be foundompared.

Specifically, once th& points are known, then th&21
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TABLE | relaxation oscillators, switched-capacitor and switched-

RELATING THE RF SMULATION METHODS current filters, samplers, sample-and-holds, and chopper
stabilized amplifiers. In addition, the timestep is automati-

Baseband HB Family SM Family cally chosen to control error. Though not an inherent issue,
(SPICE) it is a failing of existing harmonic balance simulators that

they do not automatically control error.
DC HB SM ] _
The strong convergence properties of shooting methods

AC, Noise Sm Sig HB Sm Sig SM result from its implementation as a multilevel Newton
method, and not from the fact it is a time-domain method.
Indeed, it is possible to formulate harmonic balance as a
HB, SM QPHB MET time-domain method [17,40], yet its convergence proper-
ties do not fundamentally change.

Progress on developing RF simulation methods has beqR;rmonic balance can be made as robust as shooting
rapid over the last decade and is co_ntlnumg. As a reS_UIItﬂethOdS by incorporating them in a carefully designed
any comparisons based on currently implemented versiong, ninyation or homotopy method [17]. However, because
of the methods will quickly become dated. So instead, Lontinuation methods end up calling harmonic balance
will try to extrapolate from current trends and cOmparéeng, or perhaps hundreds, of times, they can be slow. The
what is likely to be the eventual attributes of the methods.abi“ty of shooting methods to converge on a large class of
strongly nonlinear circuits without the need for continua-
tion methods represents a significant advantage in effi-
The main strength of harmonic balance is its natural supciency over harmonic balance.

rt for fr ncy-domain m Is — both linear and nons, .. . - .
pot or frequency domain models — both linear and no (y\llth shooting methods, it is natural to perform transient
linear. Distributed components such as lossy an

. . T . samalysis for a while before starting the shooting iteration in
dispersive transmission lines and interpolated tables of S- : . S
order to generate a good starting point. This is usually suf-

parameters from either measurements or electromagnet#.c. 7
) ; bment to get convergence even on troublesome circuits
simulators are examples of linear models that are handle

) - ; . . except when the time constants in the circuit are much
easily and efficiently with harmonic balance. Nonlinear . . i -
. . larger than the period of the signal. If this is not sufficient,
frequency domain models are based on Volterra series an

. . . . 9ne can also use continuation methods with shooting
are derived either from simulation or from measuremen o . . . ;
methods. The initial transient analysis has the side benefit

[44]. In addition, itis becoming more common for abStraCtthat it helps to identify circuits that are unexpectedly

behavioral models to be written directly in the frequency
. . . . unstable.
domain. There is, however, one caveat. It is relatively easy

to generate nonphysical models in the frequency domain.Finally, the preconditioner available in shooting methods
seems to be more robust and less burdensome than the pre-

Harmonic balance is extremely efficient and accurate i o . . )
: . : .. conditioners available with harmonic balance. The precon-
bothv andf in (8) are nearly sinusoidal. However this is . . . : T
ditioner is used to implement the matrix-implicit linear

not a feature tha_t ﬁr_u_js much appllc_anon n practl_ce. It ISsolvers that allow both shooting methods and harmonic
generally only significant when trying to determine the

distortion of very low distortion amplifiers and filters. It balance to handle large problems. This is currently an area

. . i of innovation, and so this situation may change.
does not help analyzing mixers, amplifiers, and samplers

because they contain signals that are far from sinusoidal.A significant disadvantage of shooting methods is that
they do not support distributed components. While it is

B. Strengths of Shooting Methods conceivable that shooting methods can be extended to han-
The strengths of shooting methods stem from the propefll® distributed components, doing so will likely compro-
ties of its underlying transient analysis. In particular, itS€ their strong convergence properties and their

chooses nonuniform timesteps in order to control errofPréconditioner.
and it has excellent convergence properties. The fundamental strengths of shooting methods and har-
dnonic balance are compared in Table 1.

Transient Ckt Env Env Follow

A. Strengths of Harmonic Balance

The ability of transient analysis, and so shooting method
to place time points in a nonuniform manner allows it to
accurately and efficiently follow abruptly discontinuous
waveforms. Small time steps can be used to accurateihere has been a tremendous amount of innovation and
resolve rapid transitions without taking small steps everyProgress in RF simulation methods in the past decade,
where. This is very important for circuits such as mixersWith the result being the wide variety of methods available

VIlI. CONCLUSION
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TABLE Il [4] C. Dragone. Analysis of thermal and shot noise in pumped
STRENGTHSOF SHOOTING METHODSAND HARMONIC BALANCE resistive diodesThe Bell System Technical Journaobl.

47,no0. 9, pp. 1883-1902, November 1968.

Shooting Methods Harmonic Balance [5] S. Egami. Nonlinear, linear analysis and computer-aided
design of resistive mixeréEEE Transactions on Micro-

« Convergence * Frequency domain models wave Theory and Techniquesl. MTT-22, no. 3, pp. 270-

« Nonuniform timesteps « No frequency limit on “small” 275, March 1974.

* Robust preconditioner  signals [6] P. Feldmann and R. Freund. Efficient linear circuit analysis

3 .. . by Padé Approximation via the Lanczos ProcéBEE
today. Each method carries with it limiting assumptions Transactions on Computer-Aided Design of Integrated Cir-
that it exploits to perform efficiently when those assump- cuits and Systemsol. 14, no. 5, pp. 639-649, May 1995.
tions are satisfied. However, the assumptions also Preventiz; w. Gardner.ntroduction to Random Processes: With Ap-
each method from being used in a general setting. There is ~ piications to Signals and SystervcGraw-Hill, 1989.

no unlvgrs_;al m?thOd’ and it 'S_ unllke.ly there will ever be [8] D. Hente and R. Jansen. Frequency-domain continuation
one. This is mainly a problem in that it prevents the whole ~ * method for the analysis and stability investigation of non-
RF section of a transceiver from being simulated together.  linear microwave circuitslEE Proceedingspart H, vol.
While it is starting to be possible to simulate the whole 133, no. 5, pp. 351-362, October 1986.

signal path of a receiver or a transmitter, incorporating the [9] p. Heikkila. Object-Oriented Approach to Numerical Cir-
frequency synthesizer and any digital signal processing is  cuit Analysis Ph. D. dissertation. Helsinki University of
still beyond reach. Technology, January 1992.

While the existing methods and their obvious extensionsl10] 3555?@%%@%? v(\/:;’vne"i:is;grr‘s!osasrfrl‘d “ﬂLsgd%fErEicm'
do not solv_e all RF S|m_ulat|on problems for |nd|V|dua_I Transactions on Microwave Theory and Techniques
blocks, their coverage is pretty good. As such, work in MTT-26, no. 2, pp. 49-55, February 1978.

developing new methods Is expected FO gr‘?d“a”y de_C“_ne[ll] S. Kapur, D. Long and J. Roychowdhury. Efficient time-do-

A new area of effort is expected to be in using the existing main simulation of frequency-dependent elemelBEE/

methods to generate high level models of individual blocks ACM International Conference on Computer-Aided De-

that will allow more general methods to simulate the sign: Digest of Technical Paperdovember 1996.

whole system. Examples of this new trend include using[12] F. Kaertner. Determination of the correlation spectrum of

Volterra series to model the nonlinear behavior of RF oscillators with low noiselEEE Transactions on Micro-

blocks [44] and using the small-signal time-varying noise wave Theory and Technigquesl. 37, no. 1, Jan. 1989, pp.

analyses on the individual blocks in a phase-locked loop to ~ 90-101.

generate behavioral models that include jitter [3,19], [13] F. Kaertner. Analysis of white arfd® noise in oscillators.

which allows accurate and efficient noise prediction for ~ International Journal of Circuit Theory and Applications

frequency synthesizers. vol. 18, pp. 485-519, 1990.

[14] A. Kerr. Noise and loss in balanced and subharmonically
pumped mixers: part 1 — theofEEE Transactions on Mi-
crowave Theory and Technique®l. MTT-27, no. 12, pp.
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