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Abstract — The principles employed in the develop-
ment of modern RF simulators are introduced and the
various techniques currently in use, or expected to be
in use in the next few years, are surveyed. Frequency-
and time-domain techniques are presented and con-
trasted, as are steady-state and envelope techniques
and large- and small-signal techniques.

I.  RF CIRCUITS

The increasing demand for low-cost mobile communica-
tion systems has greatly expanded the need for simulation
algorithms that are both efficient and accurate when
applied to RF communication circuits.

RF circuits have several unique characteristics that are bar-
riers to the application of traditional circuit simulation
techniques. Over the last decade, researchers have devel-
oped many special purpose algorithms that overcome
these barriers to provide practical simulation for RF cir-
cuits, often by exploiting the very characteristic that repre-
sented the barrier to traditional methods. 

Despite dramatic progress, the average design cycle of an
RFIC is still twice the length of that for other ICs found in
a communication system, such as a cellular phone. This
represents a significant practical barrier to integration of
the RF and baseband sections of a transceiver onto a single
chip. Clearly, more progress is necessary.

This paper is a overview of RF simulation methods that
seeks to provide an understanding of how the various
methods address the RF simulation problem, and how they
relate to each other.

It begins by describing the unique characteristics of RF
circuits. The basic solution methods of transient analysis,
harmonic balance, and shooting methods are presented
and contrasted. Small-signal analysis versions of both har-
monic balance and shooting methods are covered. Com-
posite methods are next. These methods apply the base

methods in layers to provide dramatic new capabilities.
The composite methods are divided into two groups. The
first is based on a multidimensional representation of time.
The second is based on sampling the RF signal and finding
its envelope. The paper concludes with comparisons of the
methods.

A.  Narrowband Signals

RF circuits process narrowband signals in the form of
modulated carriers. Modulated carriers are characterized
as having a periodic high-frequency carrier signal and a
low-frequency modulation signal that acts on either the
amplitude, phase, or frequency of the carrier. For example,
a typical cellular telephone transmission has a 10-30 kHz
modulation bandwidth riding on a 1-2 GHz carrier. In gen-
eral, the modulation is arbitrary, though it is common to
use simple periodic or quasiperiodic modulations con-
structed from a small number of sinusoids for test signals.

The ratio between lowest frequency present in the modula-
tion and the frequency of the carrier is a measure of the
relative frequency resolution required of the simulation.
General purpose circuit simulators, such as SPICE, use
transient analysis to predict the nonlinear behavior of a cir-
cuit. Transient analysis is inefficient when it is necessary
to resolve low modulation frequencies in the presence of a
high carrier frequency because the high-frequency carrier
forces a small time step while a low-frequency modulation
forces a long simulation interval.

Passing a narrowband signal though a nonlinear circuit
results in a broadband signal whose spectrum is relatively
sparse, as shown in Figure 1. In general, this spectrum

consists of clusters of frequencies near the harmonics of
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Fig. 1.  Spectrum of a narrowband signal centered at a carrier
frequency fc after passing though a nonlinear circuit.
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the carrier. These clusters take the form of a discrete set of
frequencies if the modulation is periodic or quasiperiodic,
and a continuous distribution of frequencies otherwise.

RF simulators exploit the “sparse” nature of this spectrum
in various ways and with varying degrees of success.
Steady-state methods are used when the spectrum is dis-
crete, and transient methods are used when the spectrum is
continuous.

B.  Time-Varying Linear Nature of the RF Signal Path

Another important but less appreciated aspect of RF cir-
cuits is that they are generally designed to be as linear as
possible from input to output to prevent distortion of the
modulation or information signal. Some circuits, such as
mixers, are designed to translate signals from one fre-
quency to another. To do so, they are driven by an addi-
tional signal, the LO, a large periodic signal the frequency
of which equals the amount of frequency translation
desired. For best performance, mixers are designed to
respond in a strongly nonlinear fashion to the LO. Thus,
mixers behave both near-linearly (to the input) and
strongly nonlinearly (to the LO).

Since timing or synchronization signals, such as the LO or
the clock, are not part of the path of the information signal,
they may be considered to be part of the circuit rather than
an input to the circuit. This simple change of perspective
allows the mixer to be treated as having a single input and
a near-linear, though periodically time-varying, transfer
function. As an example, consider a mixer made from an
ideal multiplier and followed by a low-pass filter. A multi-
plier is nonlinear and has two inputs. Applying an LO sig-
nal of  consumes one input and results in a
transfer function of

, (1)

which is clearly time-varying and is easily shown to be lin-
ear with respect to vin. If the input signal is

, (2)

then

(3)

and

. (4)

This demonstrates that a linear periodically-varying trans-
fer function implements frequency translation.

Often we can assume that the information signal is small
enough to allow the use of a linear approximation of the
circuit from its input to its output. Thus, a small-signal
analysis can be performed, as long as it accounts for the
periodically varying nature of the signal path, which is

done by linearizing about the periodic operating point.
This is the idea behind the small-signal analyses of Section
III. Traditional simulators such as SPICE provide several
small-signal analyses, such as the AC and noise analyses,
that are considered essential when analyzing amplifiers
and filters. However, they start by linearizing a nonlinear
time-invariant circuit about a constant operating point, and
so generate a linear time-invariant representation, which
cannot exhibit frequency translation. By linearizing a non-
linear circuit about a periodically varying operating point,
we extend small-signal analysis to circuits that must have
a periodic timing signal present to operate properly, such
as mixers, switched filters, samplers, and oscillators (for
oscillators the timing signal is the desired output of the
oscillator, while the information signal is generally an
undesired signal, such as the noise). In doing so, a periodi-
cally varying linear representation results, which does
exhibit frequency translation.

All of the traditional small-signal analyses can be
extended in this manner, enabling a wide variety of appli-
cations (some of which are described in [39,45]). In partic-
ular, a noise analysis that accounts for noise folding and
cyclostationary noise sources can be implemented [26,32],
which fills a critically important need for RF circuits.
When applied to oscillators, it also accounts for phase
noise [3,12,13].

The linearity of the RF signal path can also be exploited to
improve the convergence of the methods, as will be pre-
sented later.

C.  Linear Passive Components

At the high frequencies present in RF circuits, the passive
components, such as transmission lines, spiral inductors,
packages (including bond wires) and substrates, often play
a significant role in the behavior of the circuit. The nature
of such components often make them difficult to include in
the simulation. 

Generally the passive components are linear and are mod-
eled with phasors in the frequency-domain. This greatly
simplifies the modeling of distributed components such as
transmission lines, using either analytical expressions or
tables of S-parameters. Large distributed structures, such
as packages, spirals, and substrates, often interface with
the rest of the circuit through a small number of ports.
Thus, they can be easily replaced by a N-port macromodel
that consists of the transfer functions. These transfer
functions are found by reducing the large systems of equa-
tions that describe these structures, leaving only the equa-
tions that relate the signals at their ports. The relatively
expensive reduction step is done once for each frequency
as a preprocessing step. The resulting model is one that is
efficient to evaluate if N is small. This is usually true for

ωLOt( )cos

vout t( ) LPF ωLOt( )vin t( )cos{ }=

vin t( ) m t( ) ωct( )cos=

vout t( ) LPF m t( ) ωct( ) ωLOt( )coscos{ }=
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LO
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transmission lines and spirals, and less often true for pack-
ages and substrates.

Time-domain simulators are formulated to solve sets of
first-order ordinary-differential equations (ODE). How-
ever, distributed components, such as transmission lines,
are described with partial-differential equations (PDE) and
so are problematic for time-domain simulators. Generally,
the PDEs are converted to a set of ODE using some form
of discretization [22]. Such approaches suffer from band-
width limits. A more general approach is to compute the
impulse response for a distributed component from a fre-
quency domain description and use convolution to deter-
mine the response of the component in the circuit [11,34].
Evaluating lossy or dispersive transmission line models or
tables of S-parameters with this approach is generally
expensive and error-prone [36]. Packages, substrates and
spirals can be modeled with large lumped networks, but
such systems are too large to be efficiently incorporated
into a time domain simulation, and so some form of reduc-
tion is necessary [6,28].

II.  NUMERICAL SOLUTION OF DAES

If we ignore distributed components for the moment, the
basic idea behind circuit simulation is to solve a nonlinear
set of differential-algebraic equations (DAEs). We start by
proposing the form of the solution as a linear combination
of basis functions. A primary requirement of the basis
functions is that we must know their derivatives. This
allows us to analytically evaluate the derivatives in the
DAE, thereby converting the DAE to a system of nonlinear
algebraic equations that can be solved with Newton’s
method. Examples of possible basis functions are polyno-
mials and sinusoids. The efficiency and accuracy of the
simulation is dependent on the choice of basis functions. A
careful choice of basis functions can result in tremendous
performance advantages.

The choice of basis functions defines the solution space
for the method. Note that this space may not contain good
approximations to all of the solutions to the original DAE,
in which case the method based on that choice of basis
functions will not be able to find those solutions. This is
used to advantage to avoid particular solutions that are
either uninteresting or undesirable. For example, if the
basis functions are chosen to be sinusoids, then only
steady-state behavior is representable and so the initial
transient behavior is avoided. Furthermore, the circuit can
be simulated even if it is unstable.

The other way to avoid undesired solutions is to apply
constraints on the solution in the form of initial or bound-
ary conditions. In general, DAEs have an infinite contin-
uum of solutions, and so constraints must be applied
before they can be solved for a particular solution unless

the solution space of the method contains only isolated
solutions of the DAE.

A.  Transient Analysis

Transient analysis breaks the time continuum into a series
of adjacent short intervals and uses low-order polynomials
as the basis functions over each interval (the time step)
with the constraint that the solution must be continuous
across interval boundaries (the time points). For example,
consider the nonlinear DAE

. (5)

While this equation is capable of modeling any lumped
time-invariant nonlinear system, it is convenient to think
of it as being generated from nodal analysis, and so repre-
senting a statement of Kirchhoff’s Current Law for a cir-
cuit containing nonlinear conductors, nonlinear capacitors,
and current sources. In this case,  is the node
voltage,  represents the current out of the
node from the conductors, q(v(t)) represents the charge out
of the node from the capacitors, and u(t) represents the
current out of the node from the sources.

Consider trapezoidal rule. This is a second-order method
that assumes that the solution and its first derivative are
continuous at the interval boundaries. As such, they would
be known at the start of the interval from the solution of
the previous interval. With a small amount of algebra, one
can show that if ts–1 is the initial point in the interval, ts is
the final point, and hs = ts – ts–1, then for a second-order
polynomial,

. (6)

Substituting (6) into (5) converts it into a sequence of non-
linear algebraic systems of equations that can be solved
with Newton’s method to build up a pointwise approxima-
tion to the solution from some initial state.

Under certain mild conditions, it is possible to show that
Newton’s method will converge at every time point of a
transient analysis. Newton’s method is an iterative proce-
dure that converges to the solution of a nonlinear system of
equations, if the initial starting point is close to the final
solution. As long as the solution trajectory for the DAE is
continuous, which it must be except at a set of distinct
points (in particular, at jump or catastrophe points, which
are rare), and if the starting point used for the Newton iter-
ation is an extrapolation from the values at previous time
points, then one can always take a time step small enough
for Newton’s method to converge.

f v t( ) t,( ) i v t( )( ) dq v t( )( )
dt

--------------------- u t( )+ + 0= =

v t( ) RN∈
i v t( )( ) RN∈

dq v ts( )( )
dt
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2
hs
----- q v ts( )( ) q v ts 1–( )( )–( )

dq v ts 1–( )( )

dt
---------------------------–=
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B.  Harmonic Balance

Harmonic balance [17,23,29] uses harmonically related
sinusoids for basis functions. As noted earlier, such basis
functions cannot represent the initial transient, so har-
monic balance directly computes the steady-state behavior
of the circuit. 

For simplicity, we will use phasors (complex exponentials)
as basis functions rather than sines and cosines. We will
also treat the time-domain signals as being complex val-
ued and simply ignore the imaginary parts. While this is
not as efficient as if we assumed real-valued signals, it
results in a simpler presentation. For more efficient imple-
mentations, see [17,20,30].

With phasors as basis functions, harmonic balance has a
natural ability to incorporate the frequency-domain
descriptions of distributed components. Thus, we formu-
late a new test problem that is similar to (5), except that the
signals are complex valued and another term is added to
model distributed components. In addition, we assume that
the circuit is driven (i.e. that u(t) is not constant).

 (7)

or
, (8)

where v(t), u(t), y(t), i(v(t)), q(v(t)), and , v(t)
and u(t) are assumed to be T-periodic, y(t) is the impulse
response of the linear components, while i and q now rep-
resent only the nonlinear components.

Harmonic balance assumes that both v and f of (8) are for-
mulated as Fourier series,

, (9)

where ωk = kλ and λ = 2π/T is the fundamental frequency.
Now (8) is rewritten as 

, (10)

where

 (11)

Since and  are linearly independent if k1 ≠ k2,
F(V, k) = 0 for each k individually. To make the problem
numerically tractable, it is necessary to consider only the
first K harmonics. Then, in vector form,

, (12)

where  are vectors of
vectors. Each is composed of N vectors that represent the
spectrum at each node.  are block matrices. Ω is
block diagonal and

(13)

is the frequency-domain differentiation operator and
. Ymn is the Laplace transform of ymn evaluated

at jωk for each k. It is diagonal because the components
modeled by y are time-invariant.

While it is possible to model some types of nonlinearities
directly in the frequency domain [37], this is not practical
or desirable in all cases. Instead, a procedure is employed
where V is first converted into the time domain at evenly
spaced sample points using the Inverse Discrete Fourier
Transform (IDFT),

. (14)

where s = 0, 1,..., S–1 and . While S
may be set equal to Smin, typically it is chosen in the range
2Smin < S < 10Smin to reduce aliasing. For each time point,
both i(v(ts)) and q(v(ts)) are evaluated where ts = sT/S, and
the result converted back into the frequency domain using
the forward Discrete Fourier Transform (DFT),

. (15)

Both the DFT and the IDFT can be written a matrix opera-
tions [17]:

X = F x, (16)

x = F –1X, (17)

where F represents the DFT and F –1 of represents the
IDFT. (16) is a restatement of (15) and (17) is a restate-
ment of (14). If S > Smin, these matrices are not square.
Now

, (18)

, (19)

. (20)

Applying Newton-Raphson to solve (12) results in the iter-
ation

, (21)

where r is the iteration number and 

(22)

is the harmonic Jacobian.
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, (23)

where

(24)

is a conversion matrix. The derivation of  fol-
lows from the chain rule.

 (25)

 (26)

Since i(v) is algebraic,  is diagonal.

, (27)

where  is the conductance
waveform for the nonlinear resistors. 

From ,

. (28)

 is derived and constructed from cmn in a simi-
lar manner, where  is the
capacitance waveform for the nonlinear capacitors.

Efficiency:  is big and relatively dense, and so
expensive to store and factor. To reduce the cost of solving
(21), matrix-implicit methods are used. In these methods,
only the component pieces of the Jacobian (g, c, and Y) are
stored and iterative linear equation solvers such as the
Krylov-subspace methods [33] are employed. These meth-
ods solve this linear system of equations by evaluating a
sequence of matrix-vector products (MVP) that involve
the Jacobian. The MVPs can be evaluated with nearly lin-
ear time and storage by exploiting the structure of (28) and
by using fast algorithms such as the FFT to implement F
and F –1 [21]. Unfortunately, these iterative linear solvers
are not guaranteed to converge and require the use of a
preconditioner to improve their convergence. The original
linear system of equations

(29)

is preconditioned by multiplying both sides by . One
then applies the iterative solver to the preconditioned sys-
tem

. (30)

Generally, the preconditioner  is chosen to be a close
approximation to A that is also easy to invert. For mildly
nonlinear problems, constructing  by linear-

izing about the DC operating point and performing a sim-
ple AC analysis at each ωk is an effective and efficient
choice [9,21,40]. In this case,  is the Jacobian generated
by the Gauss-Jacobi-Newton harmonic relaxation algo-
rithm [17]. This preconditioner is not sufficient for
strongly nonlinear problems. To handle these problems, it
is necessary to adaptively prune the full harmonic Jaco-
bian as in the harmonic-relaxation Newton algorithm
[17,20].

When using the matrix-implicit methods, harmonic bal-
ance requires roughly  operations, where N is the
number of circuit equations and K is the number of fre-
quencies required to accurately represent both v and f. This
does not include the operations required to precondition
the system of equations, which on strongly nonlinear prob-
lem may be far from negligible.

Extensions: An extremely important application of har-
monic balance is determining the steady-state behavior of
oscillators. However, as presented, harmonic balance is
not suitable for autonomous circuits such as oscillators.
The method was derived assuming the circuit was driven,
which made it possible to know the operating frequency in
advance. Instead, it is necessary to modify harmonic bal-
ance to directly compute the operating frequency [17].

Applications: Harmonic balance is generally used to pre-
dict the distortion of RF circuits. It is also used to compute
the operating point about which small-signal analyses are
performed (presented later). When applied to oscillators, it
is used to predict the operating frequency and power, and
can also be used to determine how changes in the load
affect these characteristics (load pull).

Its space of application is similar to that of shooting meth-
ods (presented next). It is preferred over shooting methods
when the circuit includes distributed components.

C.  Shooting Methods

Transient analysis solves initial-value problems. A shoot-
ing method is an iterative procedure layered on top of tran-
sient analysis that is designed to solve boundary-value
problems. Boundary-value problems play an important
role in RF simulation. For example, assume that (5) is
driven with a non-constant T-periodic stimulus. The T-
periodic steady state solution is the one that also satisfies
the two-point boundary constraint,

. (31)

If the initial state v(t0) is known, then transient analysis
can solve (5) and compute the state as some later time t1.
In general, one writes

(32)
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Â
1–

Â
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where φ is the state transition function for the differential
equation. Shooting methods reformulate (5) and (31) as

, (33)

where ,which is a non-
linear algebraic problem and so standard Newton methods
can be used to solve for v(0). We refer to the combination
of the Newton and shooting methods as the shooting-New-
ton algorithm.

When applying Newton's method directly to (33), it is nec-
essary to compute both the response of the circuit over one
period and the sensitivity of the final state v(T) with
respect to changes in the initial state v(0). The sensitivity
is used to determine how to correct the initial state to
reduce the difference between the initial and final state.

Applying Newton's method to (33) results in the iteration

 (34)

where r is the iteration number, v0 = v(0), 1 is the identity
matrix, and

. (35)

There are two important pieces to the computation of the
Newton iteration given in (34): evaluating the state-transi-
tion function , and forming and factoring the
matrix , which is a dense matrix in general. 

The state-transition function is computed by integrating
(5) numerically over the shooting interval. The derivative
of the state-transition function, referred to as the sensitiv-
ity matrix, is computed simultaneously because there are
several quantities that are common to both computations
[1,17,38,40].

Efficiency: Forming Jφ requires O(N2S) operations where
S is the number of time points used to evaluate φT. Factor-
ing  requires O(N3) operations. As a result, forming
and factoring  becomes intractable when N exceeds
several hundred. As with harmonic balance, matrix-
implicit Krylov-subspace methods are used to avoid form-
ing and factoring  [38]. Again, the component
pieces of  are saved and the matrix-vector products
are performed on the fly. The component pieces are

(36)

and  at each time point s, where

, (37)

, (38)

and hs = ts – ts – 1. A natural preconditioner is applied sim-
ply by saving and applying Jf in LU factored form [40].
This preconditioner has proven itself to be extremely
robust.

Convergence: Newton’s method is applied both in the
outer loop to solve (33) and in the inner loop to solve (5) at
each time point, making this a multi-level Newton method.
As described before, the ability to adjust the time step dur-
ing transient analysis results in Newton’s method being
extremely reliable in the inner loop. The outer loop is also
quite reliable because φT is generally near linear as a direct
result of RF circuits having near linear signal paths. Thus,
shooting-Newton represents a well-designed multi-level
Newton method where the inner loop is robust and shields
the outer loop from the nonlinearity inherent in the prob-
lem.

Extensions: As with harmonic balance, it is extremely
important to be able to determine the steady-state behavior
of oscillators. To do so it is necessary to modify shooting
methods to directly compute the period of the oscillator
[17].

Applications: Shooting methods are applied in the same
situations as harmonic balance. It is generally preferred if
the circuit is driven with strongly discontinuous signals
(pulses as opposed to sinusoids). As such, shooting meth-
ods are well suited for simulating switching mixers,
switched filters, samplers, frequency dividers, and relax-
ation oscillators as long as the circuits do not contain dis-
tributed components.

III.  SMALL -SIGNAL ANALYSIS

Consider a circuit whose input is the sum of two periodic
signals, u(t) = uL(t) + us(t), where uL(t) is an arbitrary peri-
odic waveform with period TL and us(t) is a sinusoidal
waveform of radial frequency ωs whose amplitude is
small. 

Let vL(t) be the steady-state solution waveform when us(t)
is zero. Then allow us(t) to be small, but nonzero. We can
consider the new solution v(t) to be a perturbation vs(t) on
vL(t), as in v(t) = vL(t) + vs(t). The small-signal solution
vs(t) is computed by linearizing the circuit about vL(t) and
applying one of the methods for finding the steady-state
solution already described. From the theory of periodically
time-varying systems [5,43], it is known that for

(39)

the steady-state response is given by
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hs
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. (40)

where λ = 2π/TL is the large signal fundamental frequency.
Vs(k) represents the sideband for the kth harmonic of VL. In
this situation, there is only one sideband per harmonic
because Us is a single frequency complex exponential and
the circuit is linear. This representation has terms at nega-
tive frequencies. If these terms are mapped to positive fre-
quencies, then the sidebands with k < 0 become lower
sidebands of the harmonics of vL and those with k > 0
become upper sidebands.

Vs(k)/Us is the transfer function for the input at ωs to the
output at ωs + kλ. Notice that with periodically-varying
linear systems there are an infinite number of transfer
functions between any particular input and output. Each
represents a different frequency translation.

Extensions: In the next few sections, the basic techniques
are introduced that are used to compute the small-signal
steady state response of a circuit linearized about a time
varying operating point. This is sufficient for performing a
time-varying AC analysis and can be extended to other
types of small-signal analyses, such as computing the S-
parameters of the circuit. These small-signal analyses are
also extendable to cyclostationary noise analysis [3,7],
which is an extremely important capability for RF design-
ers [39].

These methods can also be extended so as to allow a
small-signal analysis about a quasiperiodic operating point
or small-signal analysis of autonomous circuits.

Applications: Small-signal analyses are tremendously use-
ful for computing transfer functions (such as conversion
gain and supply rejection) and predicting noise perfor-
mance. In this way, they are similar to the AC and noise
analyses in SPICE, but they can be applied to all kinds of
circuits that the traditional small-signal analyses cannot,
such as mixers, switched-filters, and samplers. Because
they compute transfer functions in the presence of large
signals, they can be used to determine the degradation of
gain and noise when there is a large interfering signal on
an adjacent channel. They can also be used to estimate
intermodulation distortion [39].

When performing noise analysis, they accurately capture
noise folding present in all circuits that have time-varying
operating points, but which is especially important in mix-
ers, samplers, and oscillators. In addition, they can be used
to predict the phase noise of oscillators.

A.  Transient Small-Signal Analysis

Though beyond the scope of this paper, there has been
recent progress on performing small-signal noise analysis
about a transient operating point [3]. However, in most
cases, it is the small-signal behavior when the circuit is in
steady state that is of interest. Using these methods gener-
ally requires integrating through any initial transient.

B.  Harmonic Balance Small-Signal Analysis

Consider (12) where U = UL + Us and V = VL + Vs. Ini-
tially set Us = 0 and solve (12) for VL such that

. (41)

Since Us is expected to be small, we can expand about VL
using a Taylor series truncated to first order.

(42)

or 
(43)

where J(VL) is computed as in (22) and Ωs is as in (13)
except with ωk = ωs + kλ.

Solving (43) for Vs gives the sidebands generated by Us.

These ideas are extended to cyclostationary noise analysis
in [10,12,32].

C.  Shooting Method Small-Signal Analysis

Consider the circuit described by (5). Assume us(t) = 0 and
let vL(t) be the resulting solution that also satisfies the two-
point constraint (31). Linearizing (5) about vL(t) yields a
time-varying linear system

(44)

that can be solved for vs(t) if us(t) is small.

From (40) it follows that

. (45)

Equation (45) in the periodically time-varying linear
steady-state problem is analogous to (31) in the standard
steady-state problem. It is solved using a modified shoot-
ing method [25,41]. Note that (45) implies that the entire
small-signal steady-state response of the periodic time-
varying system is determined by the behavior of vs(t) on
any interval of length TL. 

Since the solution is computed by performing a time-
domain simulation, there is an upper bound on the analysis
frequency that is imposed by the largest time step used.
The period of analysis frequency must be much larger than
the largest time step. Typically, the time steps are the same

vs t( ) Vs k( )ej ωs kλ+( ) t

k ∞–=

∞

∑=

F VL( ) I VL( ) ΩQ VL( ) YVL UL+ + + 0= =

∂I VL( )
∂V

-----------------Vs Ωs
∂Q V( )

∂V
----------------Vs YVs Us+ + + 0≈

J VL( )Vs U– s≈

dC vL t( )( )
dt

-------------------------vs t( ) G vL t( )( )vs t( ) us t( )+ + 0=

vs t TL+( ) vs t( )ejωsTL=
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ones used when computing the large signal operating
point.

Standard shooting methods can be used if we form
. Then, (45) becomes

, (46)

which is the same form as (31) if t = 0. Now conventional
shooting methods are applied to find xs. Once known, Fou-
rier analysis [18] is applied to find Xk, from which Vk is
trivially computed. This is a different, but equivalent, way
of deriving the method given in [25,41].

This procedure is applied to cyclostationary noise analysis
in [26,41].

IV.  MULTI-VARIATE METHODS

An interesting approach to solving narrowband problems
uses a multi-variate representation of the signals and refor-
mulates (5) as a partial-differential equation. Consider a
simple two-tone quasiperiodic signal

, (47)

where ω1 is much smaller than ω2. A large number of time
points would be needed to accurately approximate such a
signal. For example, if 15 points per period were needed to
accurately represent the highest frequency, and if ω2 =
1000 ω1, then 15,000 points are needed to accurately rep-
resent x(t). Now consider a bi-variate representation
obtained by replacing t with t1 in the slowly varying parts
of the expression, and t with t2 in the rapidly varying parts.
Then

. (48)

x(t) is easily recovered from  simply by setting t =
t1 = t2. In this case, a grid of  points are
needed to accurately represent .

Using these ideas, we can replace (5) with

 (49)

or

. (50)

A wide variety of methods are formulated from this equa-
tion by proposing different forms of the solution and dif-
ferent boundary conditions along each time axis. One can
apply transient, harmonic balance, and shooting methods
in layers and customize methods to particular classes of
problems [2,31].

A.  Quasiperiodic Harmonic Balance

If a circuit is driven with two signals at unrelated funda-
mental frequencies, it generally responds in steady state by

generating quasiperiodic (also known as polyperiodic) sig-
nals. Quasiperiodic signals have the form of a Fourier
series that is generalized in that the frequencies of the
sinusoids are not just integer multiples of a single funda-
mental frequency. Instead, they are the linear combination
of integer multiples of several fundamentals. For example,
if there are two fundamentals, then

, (51)

where λ1 and λ2 are the fundamental frequencies.

The response contains components at multiples of each
fundamental frequency as well as at the sums and differ-
ences of these frequencies. Rearranging (51) allows us to
see this as being equivalent to constructing the waveform
as a conventional Fourier series where the sinusoidal fre-
quencies are at integer multiples of λ1, except that the Fou-
rier coefficients themselves are time-varying. In particular,
the coefficient  is periodic with period T2 = 2π/λ2
and can itself be represented as a Fourier series in t2.

(52)

Convert to a bi-variate representation by associating t1
with λ1 and t2 with λ2.

(53)

This is a two-dimensional Fourier series, and so  and X
are related by a two-dimensional Fourier transform.

Assuming v and f of (50) take the form of (53) (a linear
combination of periodically AM modulated sinusoids)
results in 

, (54)

where

(55)

As with periodic harmonic balance, the terms in (54) are
linearly independent, so F(V, k1, k2) = 0 for each k1, k2. In
vector form,

, (56)

where Ω is generalized such that ωk = k1λ1 + k2λ2. This
becomes finite-dimensional by bounding . This is
similar to (12), except the term for the distributed linear

xs t( ) vs t( )e j– ωst=
xs t TL+( ) xs t( )=

x t( ) ω1t( ) ω2t( )coscos=

x̂ t1 t2,( ) ω1t1( ) ω2t2( )coscos=

x̂ t1 t2,( )
15 15× 225=
x̂ t1 t2,( )

∂q v̂ t1 t2,( )( )
∂t1

-------------------------------
∂q v̂ t1 t2,( )( )

∂t2
------------------------------- i v̂ t1 t2,( )( ) û t1 t2,( )+ + + 0=

f v̂ t1 t2,( ) t1 t2, ,( ) 0=

x t( ) X k1 k2,( )ej k1λ1 k2λ2+( )t

k2 ∞–=

∑
k1 ∞–=

∑=

X̃ t k, 1( )

x t( ) X k1 k2,( )ejk2λ2t

k2 ∞–=

∑ ejk1λ1t

X̃ t k, 1( )

k1 ∞–=

∑=

          

x̂ t1 t2,( ) X k1 k2,( )ejk2λ2t2ejk1λ1t1

k2 ∞–=

∑
k1 ∞–=

∑=

x̂

F V k, 1 k2,( )ejk1λ1t1 jk2λ2t2+

k2 ∞–=

∑
k1 ∞–=

∑ 0=

F V k, 1 k2,( ) j k1λ1 k2λ2+( )Q V k, 1 k2,( )
I V k, 1 k2,( ) U k1 k2,( )

+
+

=

F V( ) I V( ) ΩQ V( ) U++ 0= =

kj Kj≤
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components (YV) is missing. This term can be included in
(56) without difficulty because the spectrum of V is dis-
crete. When evaluating I, and Q the multidimensional dis-
crete Fourier transform is used.

Using a multidimensional Fourier transform is just one
way of formulating harmonic balance for quasiperiodic
problems. It is used here because of its simple derivation
and because it represents an early application of multi-
variate methods [30,46]. An alternate approach that is gen-
erally preferred in practice is the false frequency method,
which is based on a one-dimensional Fourier transform
[8,17].

Parametric Harmonic Balance: Harmon ic  ba lance as
described above exploits the sparse spectrum of modulated
carrier signals and the linear nature of the passive compo-
nents. However, it only incidentally exploits the nature of
RF circuits to respond in a near-linear manner to the input
signal (more effective preconditioner, fewer Newton itera-
tions). Parametric harmonic balance [42] is a variation that
retains the advantages of standard harmonic balance, but
also exploits the near-linear nature of quasiperiodic RF
circuits in a more deliberate manner. It splits harmonic
balance into two phases, one to compute the response to
the large periodic drive signal alone (ex., the LO in a
mixer), and a second phase computes the response from
the input as a perturbation of the solution computed in the
first phase. The advantage of this method is that it solves
for many fewer frequencies in the first phase when conver-
gence is a struggle. In addition, information generated in
the first phase can be used to accelerate the second phase.
In this regard, parametric harmonic balance is similar to
several of the methods presented later. Unfortunately, fur-
ther description of this method is beyond the scope of this
article.

Extensions: One obvious extension is to allow more than
two fundamentals, though the method becomes expensive
fast as the number of fundamentals increases, so in prac-
tice only two or three fundamentals are used. Another
important extension would be to support autonomous or
semi-autonomous circuits [46]. An example of an autono-
mous quasiperiodic circuit is one that consists of two cou-
pled oscillators. An example of an semi-autonomous
circuit is a free-running oscillator connected to a mixer
with a driven input.

Applications: Quasiperiodic harmonic balance is used pre-
dict intermodulation distortion of narrowband circuits and
both harmonic and intermodulation distortion of mixers.
Both it and the mixed frequency-time method are used in
similar situations. Quasiperiodic harmonic balance is pre-
ferred when the circuit includes distributed components.

B.  Circuit Envelope Method

In the last section, the concept of harmonic balance with
time-varying Fourier coefficients was introduced. In that
case, the Fourier coefficients were assumed to be periodic,
with the result that signals themselves were quasiperiodic.
With circuit envelope [24,35], the Fourier coefficients are
again time varying, but are not necessarily periodic.
Instead, the Fourier coefficients  are taken to be
transient waveforms. Thus, signals take the form

, (57)

where ωk = kλ and λ is the fundamental frequency of the
base Fourier series.  represents the complex mod-
ulation of the kth harmonic.

Now, (50) can be rewritten in the form of (57),

, (58)

where

 (59)

Because  is linearly independent of  if k1 ≠
k2, and because  is independent of t2, each
term in (58) is zero independently of the others. In other
words,  for each k, or in vector form

 (60)

As with transient analysis, discretization methods such as
trapezoidal rule or the backward difference formulae
replace dQ/dt with a finite-difference approximation, con-
verting (60) to a system of nonlinear algebraic equations
that is solved with Newton’s method. For example, apply-
ing backward Euler converts (60) to

 (61)

One of the important strengths of harmonic balance is its
ability to easily incorporate frequency-domain models for
the linear components such as lossy or dispersive trans-
mission lines. Unfortunately, this is not true with the cir-
cuit envelope method. The transient nature of the
modulations  introduces the same difficulties that
are present with distributed components in transient analy-
sis, which are addressed using similar techniques. In par-
ticular, one can use convolution [11,34], or the model for

X̃ t k,( )

x t( ) X̃ t1 k,( )ej ωkt2

k ∞–=

∞

∑=

X̃ t1 k,( )

F̃ Ṽ t1( ) t1, k,( )ej ωkt2

k ∞–=

∞

∑ 0=

F̃ Ṽ t1( ) t1, k,( )
dQ̃ Ṽ t1( ) k,( )

dt
------------------------------- jωkQ̃ Ṽ t1( ) k,( )

Ĩ Ṽ t1( ) k,( ) Ũ t1 k,( )

+ +

+

=

e
j ωk1

t2
e

j ωk2
t2

F̃ Ṽ t1( ) t1, k,( )

F̃ Ṽ t( ) t, k,( ) 0=

F̃ Ṽ t( ) t,( ) dQ̃ Ṽ t( )( )
dt

---------------------- ΩQ̃ Ṽ t( )( ) Ĩ Ṽ t( )( ) Ũ t( )+ + + 0= =

Q̃ Ṽ ts( )( ) Q̃– Ṽ ts 1–( )( )
ts ts 1––

-------------------------------------------------- ΩQ̃ Ṽ ts( )( ) Ĩ Ṽ ts( )( ) Ũ ts( )+ + + 0=

Ṽ t k,( )
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the distributed component can be separated into delay and
dispersion, with the dispersion being replaced by a lumped
approximation [36].

As the distributed components are linear, the sidebands for
each harmonic k can be treated individually. Thus, a sepa-
rate model is generated for each harmonic k, which greatly
reduces the bandwidth requirements on the models. The
model for each harmonic must only be valid over the
bandwidth of the sidebands associated with that harmonic.
In RF circuits, the bandwidths of the sidebands are usually
small relative to the carrier frequency, and so generating
models of distributed components for use in the circuit
envelope method is much easier than for conventional
transient analysis. In fact, it is not uncommon for the band-
width of an RF circuit to be so small that the transfer func-
t ion of  a dist ributed component does not change
appreciably over the bandwidth of the sidebands. In this
case, the transfer function is taken to be constant. In other
words, Ymn(ω, k) is simply replaced with Ymn(ωk, k) where
ω = ωk + δω.

Extensions: One can build circuit envelope on top of a
quasiperiodic harmonic balance rather than on top of peri-
odic harmonic balance as has been done here. One can
also build it on top of autonomous harmonic balance. 

One can also wrap shooting around circuit envelope to find
a periodic or quasiperiodic modulation waveform, which
results the multi-variate mixed frequency-time method
[31].

Applications: Circuit envelope has two primary applica-
tions. The first is predicting the response of a circuit when
it is driven with a complex digital modulation. An impor-
tant problem is to determine the interchannel interference
that results from intermodulation distortion. Simple inter-
modulation tests involving a small number of sinusoids as
can be performed with quasiperiodic harmonic balance is
not a good indicator of how the nonlinearity of the circuit
couples digitally modulated signals between adjacent
channels. Instead, one must apply the digital modulation,
simulate with circuit envelope, and then determine how the
modulation spectrum spreads into adjacent channels.

Another important application of circuit envelope is to pre-
dict the long term transient behavior of certain RF circuits.
Examples include the turn-on behavior of oscillators,
power supply droop or thermal transients in power ampli-
fiers, and the capture and lock behavior of phase-locked
loops. Another important example is determining the turn-
on and turn-off behavior of TDMA transmitters. In TDMA
(time-division multiple access), transmitters broadcast
during a narrow slice of time. During that interval the
transmitter must power up, stabilize, send the message,

and then power down. If it powers up and down too slowly,
the transmitter does not work properly. If it powers up and
down too quickly, the resulting spectrum will be too wide
to fit in the allotted channel. Simulating with traditional
transient analysis would be prohibitively expensive
because the time slice lasts on the order of 100 ms and the
carrier frequency is typically at 1 GHz or greater.

The capabilities of circuit envelope are similar to envelope
following (presented next). Circuit envelope is preferred
when the circuit contains distributed components.

V.  SAMPLING METHODS

RF circuits are generally influenced by one periodic tim-
ing signal, often referred to as the LO or the clock, and one
or more information signals. For oscillators, the timing
signal is the oscillation signal itself and the information
signal is generally noise. With sampling methods, we des-
ignate the one timing signal as the clock. If there is more
than one timing signal, then usually the largest and fastest
is chosen to be the clock. The discrete sample-envelope for
a signal x is defined as signal xenv that results when x is
sampled with a period equal to that of the clock, as shown
in Figure 2. The continuous sample-envelope is the trajec-
tory that is traced out if the phase of both the clock and the
sampling is allowed to drift relative to the other signals
present. The sampling is assumed to always occur at the
same phase of the clock. 

The sample-envelope methods apply shooting methods
over one or more clock cycles using boundary conditions
that are formulated based on assumptions about the sample
envelope. One can apply a wide variety of constraints on
the sampled envelope, which results in a plethora of meth-
ods. For example, assuming the sampled envelope is con-
stant results in simple shooting with a periodic boundary
constraint. Assuming the circuit is linear and the sample
envelope is sinusoidal results in periodic small-signal anal-
ysis. However, more interesting methods result when we
make different assumptions about the sample envelope.

A.  Envelope Following

Envelope Following approximates the sample envelope as
a piecewise polynomial [15,27] in a manner that is analo-
gous to conventional transient analysis. This approach is

Fig. 2.  Sample envelope is the waveform traced out when
signal is sampled with a period equal to that of the clock.

Sample Envelope
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efficient if the sequence formed by sampling the state at
the beginning of each clock cycle, v(0), v(T), v(2T), ...,
v(mT), changes slowly as a function of m. A “differential-
like” equation is formed from (32)

, (62)

where  is a measure of
the time-derivative of the sample envelope at mT. We can
apply traditional integration methods to compute an
approximation to the solution using a procedure that
involves solving (62) at isolated time points. If the sample
envelope is accurately approximated by a low-order poly-
nomial, then this procedure should allow us to skip many
cycles, and so find the solution over a vast number of
cycles in an efficient manner. For RF circuits, (62) is stiff
and so requires implicit integration methods such as trape-
zoidal rule, which can be written as

, (63)

where l is the time step, which is measured in terms of
cycles. This equation represents a 2-point boundary con-
straint on (62), and so together they can be solved with
shooting-Newton methods to find v(mT). As with transient
analysis, once v(mT) is computed, it is necessary to check
that the trajectory is following the low-order polynomial
as assumed. If not, the point should be discarded and the
step l  should be reduced. If desired, other integration
methods can be used, such as the backward-difference for-
mulae.

Extensions: Envelope following can be extended to sup-
port autonomous circuits such as oscillators. 

One can wrap shooting around envelope following to find
a periodic or quasiperiodic envelope, which results the
hierarchical shooting method [31].

Applications: The applications of envelope following are
the same as circuit envelope. Envelope following is pre-
ferred when the carrier signal is strongly discontinuous
(consists of pulses rather than sinusoids). As such, enve-
lope following is suitable for simulating switched filters
and switching power supplies in addition to the traditional
RF circuits.

B.  Mixed Frequency-Time Method

The Mixed Frequency-Time (or MFT) Method [16,17]
makes the assumption that the sample envelope can be
accurately approximated by a Fourier series with K terms
(excluding DC), where K is presumed to be small. If true,
then once the value of S = 2K+1 distinct points along the
sample envelope are known, then all points can be found.
Specifically, once the S points are known, then the 2K+1

Fourier coefficients can be determined using the DFT, and
then the resulting Fourier series can be evaluated to deter-
mine the value of any point. In particular, let

 (64)

be the value of S points, then we can find the value of the S
points that follow them by one cycle,

. (65)

Since the DFT is a linear operator F, there exists a linear
operator  that maps V0 to VT.

(66)

This is SN equations with 2SN unknowns. They were for-
mulated purely from the constraints on the sample enve-
lope. It represents a boundary condition on solution to (5)
in a way analogous to (31) and (45). Designate ΦT as the
collection of S state transition functions from ts to ts+T.
Then

(67)

Applying (66) to (67) gives

, (68)

which can be solved using Newton’s method for V0. As
pointed out earlier, from V0 one can calculate any point on
the sample envelope. Any point v(t) on the original wave-
form is found by integrating (5) from the appropriate point
on the sample envelope.

Extensions: As with quasiperiodic harmonic balance, the
mixed frequency-time method can be extended to an arbi-
trary number of fundamentals, though in practice is lim-
ited to two or three. It can also be extended to handle
autonomous and semi-autonomous circuits.

Applications: The applications of the mixed frequency-
time method are the same as quasiperiodic harmonic bal-
ance. The mixed frequency-time method is preferred when
the carrier signal is strongly discontinuous (consists of
pulses rather than sinusoids).

VI.  COMPARISONS

The methods presented can be grouped into two broad
families, those methods based on harmonic balance, and
those based on shooting methods. Table I shows how the
various methods are related. to baseband methods, and to
each other.

Most of the differences between the methods emanate
from the attributes of the base methods (harmonic balance
and shooting methods). So only the base methods will be
compared.

∆v mT( ) φT v mT( ) mT,( )=

∆v mT( ) v m 1+( )T( ) v mT( )–=

∆v mT( )
2
l
--- v mT( ) v m l–( )T( )–( ) ∆v m l–( )T( )–≈

V0 v t1( ) v t2( ) … v tS( ), , ,[ ]=

VT v t1 T+( ) v t2( ) T+( ) … v tS T+( ), , ,[ ]=

DT F 1– ej ωkTF=

VT DTV0=

VT ΦT V0( )=

DTV0 ΦT V0( )– 0=
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Progress on developing RF simulation methods has been
rapid over the last decade and is continuing. As a result,
any comparisons based on currently implemented versions
of the methods will quickly become dated. So instead, I
will try to extrapolate from current trends and compare
what is likely to be the eventual attributes of the methods.

A.  Strengths of Harmonic Balance

The main strength of harmonic balance is its natural sup-
port for frequency-domain models — both linear and non-
l inear. Distributed components such as lossy and
dispersive transmission lines and interpolated tables of S-
parameters from either measurements or electromagnetic
simulators are examples of linear models that are handled
easily and efficiently with harmonic balance. Nonlinear
frequency domain models are based on Volterra series and
are derived either from simulation or from measurement
[44]. In addition, it is becoming more common for abstract
behavioral models to be written directly in the frequency
domain. There is, however, one caveat. It is relatively easy
to generate nonphysical models in the frequency domain.

Harmonic balance is extremely efficient and accurate if
both v and f in (8) are nearly sinusoidal. However this is
not a feature that finds much application in practice. It is
generally only significant when trying to determine the
distortion of very low distortion amplifiers and filters. It
does not help analyzing mixers, amplifiers, and samplers
because they contain signals that are far from sinusoidal.

B.  Strengths of Shooting Methods

The strengths of shooting methods stem from the proper-
ties of its underlying transient analysis. In particular, it
chooses nonuniform timesteps in order to control error,
and it has excellent convergence properties.

The ability of transient analysis, and so shooting methods,
to place time points in a nonuniform manner allows it to
accurately and efficiently follow abruptly discontinuous
waveforms. Small time steps can be used to accurately
resolve rapid transitions without taking small steps every-
where. This is very important for circuits such as mixers,

relaxation oscillators, switched-capacitor and switched-
current filters, samplers, sample-and-holds, and chopper
stabilized amplifiers. In addition, the timestep is automati-
cally chosen to control error. Though not an inherent issue,
it is a failing of existing harmonic balance simulators that
they do not automatically control error.

The strong convergence properties of shooting methods
result from its implementation as a multilevel Newton
method, and not from the fact it is a time-domain method.
Indeed, it is possible to formulate harmonic balance as a
time-domain method [17,40], yet its convergence proper-
ties do not fundamentally change.

Harmonic balance can be made as robust as shooting
methods by incorporating them in a carefully designed
continuation or homotopy method [17]. However, because
continuation methods end up calling harmonic balance
tens, or perhaps hundreds, of times, they can be slow. The
ability of shooting methods to converge on a large class of
strongly nonlinear circuits without the need for continua-
tion methods represents a significant advantage in effi-
ciency over harmonic balance. 

With shooting methods, it is natural to perform transient
analysis for a while before starting the shooting iteration in
order to generate a good starting point. This is usually suf-
ficient to get convergence even on troublesome circuits
except when the time constants in the circuit are much
larger than the period of the signal. If this is not sufficient,
one can also use continuation methods with shooting
methods. The initial transient analysis has the side benefit
that it helps to identify circuits that are unexpectedly
unstable.

Finally, the preconditioner available in shooting methods
seems to be more robust and less burdensome than the pre-
conditioners available with harmonic balance. The precon-
ditioner is used to implement the matrix-implicit linear
solvers that allow both shooting methods and harmonic
balance to handle large problems. This is currently an area
of innovation, and so this situation may change.

A significant disadvantage of shooting methods is that
they do not support distributed components. While it is
conceivable that shooting methods can be extended to han-
dle distributed components, doing so will likely compro-
mise their strong convergence properties and their
preconditioner.

The fundamental strengths of shooting methods and har-
monic balance are compared in Table II.

VII.  CONCLUSION 

There has been a tremendous amount of innovation and
progress in RF simulation methods in the past decade,
with the result being the wide variety of methods available

TABLE I
RELATING THE RF SIMULATION  METHODS

Baseband 
(SPICE)

HB Family SM Family

DC HB SM

AC, Noise Sm Sig HB Sm Sig SM

Transient Ckt Env Env Follow

HB, SM QPHB MFT
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today. Each method carries with it limiting assumptions
that it exploits to perform efficiently when those assump-
tions are satisfied. However, the assumptions also prevent
each method from being used in a general setting. There is
no universal method, and it is unlikely there will ever be
one. This is mainly a problem in that it prevents the whole
RF section of a transceiver from being simulated together.
While it is starting to be possible to simulate the whole
signal path of a receiver or a transmitter, incorporating the
frequency synthesizer and any digital signal processing is
still beyond reach.

While the existing methods and their obvious extensions
do not solve all RF simulation problems for individual
blocks, their coverage is pretty good. As such, work in
developing new methods is expected to gradually decline.
A new area of effort is expected to be in using the existing
methods to generate high level models of individual blocks
that will allow more general methods to simulate the
whole system. Examples of this new trend include using
Volterra series to model the nonlinear behavior of RF
blocks [44] and using the small-signal time-varying noise
analyses on the individual blocks in a phase-locked loop to
generate behavioral models that include jitter [3,19],
which allows accurate and efficient noise prediction for
frequency synthesizers.
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