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Abstract Simulation in the frequency-domain avoids many of the severe problems
experienced when trying to use traditional time-domain simulators such
as Spice [1] to find the steady-state behavior of analog, RF, and mi-
crowave circuits. In particular, frequency-domain simulation eliminates
problems from distributed components and high-Q circuits by forgoing
a nonlinear differential equation representation of the circuit in favor of
a complex algebraic representation.

This paper describes the spectral Newton technique for performing
simulation of nonlinear circuits in the frequency-domain, and its im-
plementation in Harmonica. Also described are the techniques used by
Harmonica to exploit both the structure of the spectral Newton for-
mulation and the characteristics of the circuits that would be typically
seen by this type of simulator. These techniques allow Harmonica to be
used on much larger circuits than were normally attempted by previous
nonlinear frequency-domain simulators, making it suitable for use on
Monolithic Microwave Integrated Circuits (MMICs).

1. Introduction
It is common for circuits designed to operate at RF and microwave

frequencies to be pseudo-linear in nature. By this it is meant that in-
put signals are sinusoidal and small enough so that few harmonics are
produced. This does not imply that the nonlinearities in the circuit
can be neglected. Indeed, mixers and oscillators fit this description and
yet they fundamentally depend on nonlinear effects to operate. It is
also common for these circuits to have a large number of distributed
components such as transmission lines, whose models often include loss,
dispersion, and coupling effects. These distributed components are very
difficult and often impractical to simulate in the time-domain because
the partial differential equations that describe these structures often do
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not have closed-form solutions. In addition, time-domain simulators are
not able to exploit the pseudo-linear nature of these circuits, and often
require an excessive amount of time because the steady-state solution is
desired. Using a time-domain simulator to find the steady-state solution
requires that the circuit be simulated until the transient solution van-
ishes, resulting in a very expensive simulation when the circuit is high-Q
or narrow-band.

Simulating these circuits in the frequency-domain avoids these prob-
lems and eases the problem of formulating the equations for distributed
components by transforming the time-domain differential equations into
algebraic complex equations. The pseudo-linear nature of these cir-
cuits is naturally exploited since the amount of cpu time required for a
frequency-domain simulation is proportional to the number of frequen-
cies present. Another method has been proposed to find the steady-state
solution [2, 3]. The shooting method, as it is often called, iteratively
solves the circuit in the time-domain for one period; on each iteration
the initial condition is varied, attempting to make the signals at the
end of the period exactly match those at the beginning. The shoot-
ing method does work on autonomous circuits, but does not help with
distributed components and is not capable of finding almost-periodic
solutions.

Previous efforts at nonlinear frequency-domain simulation were based
on the use of harmonic balance to formulate the frequency-domain equa-
tions and an optimizer to solve them [4, 5, 6]. Using an optimizer to
solve these equations results in the number of harmonics and nonlinear
devices being severely limited. It is possible to remove this limit by in-
stead solving the nonlinear equations with Newton’s method [7]. When
this is done the circuit equations can be reformulated in a more natural
way, and by doing so the name harmonic balance becomes somewhat of
a misnomer. So the more appropriate name spectral Newton was coined.

2. Spectral Newton
In order to apply the spectral Newton method, two conditions must

be satisfied. First, the circuit must be asymptotically stable and must
have a steady-state solution for the given excitation; chaotic and sub-
harmonic behavior is specifically excluded. Second, all nonlinear devices
must be lumped and their constitutive relationship must be algebraic,
differentiable, and expressible in one of the following forms:

i = i(v) q = q(v) i = i(φ) q = q(φ)
v = v(i) v = v(q) φ = φ(i) φ = φ(q)
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Though not necessary, we will assume that the circuit has a periodic solu-
tion. Extension of these results to almost-periodic solutions is straight-
forward [7]. For simplicity, we will further assume that a nodal for-
mulation is being used and that only voltage controlled resistive and
capacitive nonlinearities are allowed.

In the time-domain a circuit can be modeled as a system of N non-
linear differential equations, here written in compact form as

f(v, t) = is(t) v(0) = v0 (1)

Let U = {h|h : < → <N}.1 Then v ∈ U is the vector of unknown node
voltage waveforms; v0 ∈ <N is the unknown initial condition that re-
sults in the solution being periodic, i.e. v(t) = v(t + T0) ∀ t; is ∈ U
is the vector of source current waveforms; and f : U × < → <N . In
order to solve this system it is traditional to discretize it in time and ap-
ply some numeric integration method. However if only the steady-state
response is of interest, it is possible to transform this system into the
frequency-domain and solve it without resorting to numeric integration.
To solve the system in the frequency-domain, it is necessary to truncate
the number of harmonics considered to a finite, and in general small, H.
The truncation is analogous to discretization in the time-domain and
is theoretically not a limitation because for all realizable circuits there
exists a frequency beyond which there is negligible power.

Since the nonlinear devices are lumped, f(v, t) can be rewritten as

f(v, t) = i(v(t)) +
d

dt
q(v(t)) +

∫ t

0
y(t− τ)v(τ)dτ (2)

where i, q : <N → <N are differentiable functions representing respec-
tively the sum of the currents exiting the nodes due to the nonlinear
conductors and the sum of the charge exiting the nodes due to the non-
linear capacitors; and y(t) ∈ <N is the impulse response of the circuit
with the nonlinear devices turned off.2

Since y is linear, the Laplace transform may be used to transform
it into the frequency-domain, y(t) ↔ Υ(s). Furthermore, since v is
periodic and the circuit is stable

∫ t

0
y(t− τ)v(τ)dτ ↔ Y V

where v ↔ V ∈ CHN contains the node voltage phasor for each node and
each frequency, and Y ∈ CHN×HN is a block node admittance matrix
for the linear portion for the circuit.

Y = [Ymn] m,n ∈ {1, 2, . . . , N}
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Ymn = [Ymn(kωo, lωo)] k, l ∈ {0, 1, . . . ,H − 1}

Ymn(kωo, lωo) =
{

Υmn(kωo) k = l
0 k 6= l

where m,n are the node indices; k, l are the frequency indices, and  =√−1.
Since v, i and q are periodic, (1) and (2) can be transformed into the

frequency domain by applying the Fourier series.

F (V ) = I(V ) + ΩQ(V ) + Y V = Is (3)

where is ↔ Is ∈ CHN contains the source current phasor for each node
and frequency; f ↔ F , i ↔ I, q ↔ Q : CHN → CHN ; and Ω ∈ CHN×HN

Ω = [Ωmn] m,n ∈ {1, 2, . . . , N}

Ωmn =
{

0 m 6= n
diag{0, ωo, 2ωo, . . . , (H − 1)ωo} m = n

and ωo = 2π/To.
The Newton-Raphson method is used to solve (3) for V , which requires

that F (V ) be differentiated with respect to V . However, since f(v, t) and
v(t) are constrained to be real functions, F (V ) is non-analytic, which
implies that its derivative J(V ) cannot be represented using complex
numbers. To circumvent this problem each complex number is written
as an equivalent vector in <2. To perform this conversion, some more
notation will be defined. Let X ∈ C. Then define XR, XI ∈ <, X̄ ∈
<2 such that XR = Re{X}, XI = Im{X}, and X̄ = [XR XI ]T .
Similar notation is used for vectors and matrices. Using this notation,
F̄ (V̄ ), V̄ ∈ <2HN and (3) is solved with the iteration

V̄ (k+1) = V̄ (k) − J̄(V̄ (k))−1[F̄ (V̄ (k))− Īs] (4)

where J ∈ <2NH×2NH is the spectral Jacobian, i.e.

J̄(V̄ ) =
∂F̄ (V̄ )

∂V̄
=

∂Ī(V̄ )
∂V̄

+ Ω
∂Q̄(V̄ )

∂V̄
+ Ȳ

If V (0) is chosen close enough to a solution, then given certain mild
conditions on (3), the sequence converges to that solution [9].

The only impediment in evaluating this expression is finding the con-
tribution of the nonlinear elements to F (V ) and J(V ) because it is ex-
tremely difficult to formulate the nonlinear device equations directly in
the frequency-domain. To avoid this problem, the node voltages are
transformed into the time-domain and applied to the nonlinear devices.
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The response current of these devices is then calculated and converted
back into the frequency-domain and added to F (V ). Calculation of
J(V ) is similar except that the node voltage waveforms are applied to
the devices’ derivative equations and the resulting waveforms are con-
verted into the frequency-domain and added to J(V ). The calculation of
the spectral Jacobian will be covered in more detail in the next section.
Since the signals are assumed to be periodic, the Fast Fourier Trans-
form (FFT) may be used to perform the transformations between the
frequency- and time-domains. If the periodic signal restriction is loos-
ened to allow almost-periodic signals, then the Discrete Fourier Trans-
form (DFT) should be used.

Spectral Newton Algorithm

Given: Initial guess of node voltage spectra taken from DC and small-signal AC
analysis of circuit.

Step 1: Convert node voltage spectra into time-domain.
Step 2: Evaluate nonlinear devices for output current and derivative waveforms.
Step 3: Convert the waveforms into the frequency-domain.
Step 4: Build and solve the spectral Newton update equation (4).
Step 5: Check F (V ) and ∆V for convergence, if not converged, go to step 1.

3. Spectral Jacobian
In our method, the spectral Jacobian is organized as the block matrix

J̄(V̄ ) =

[
∂F̄m(V̄ )

∂V̄n

]
m,n ∈ {1, 2, . . . , N} (5)

where F̄m, V̄n ∈ <2H are vectors of phasors, one phasor for each fre-
quency. F̄m equals the sum of currents exiting node m and V̄n equals
the node voltage of node n. This block matrix is referred to as the block
node admittance matrix because its structure is identical to the node
admittance matrix. The blocks have the form

∂F̄m

∂V̄n
=

[
∂F̄m(V̄ , kωo)

∂V̄n(lωo)

]
k, l ∈ {0, 1, . . . , H − 1} (6)

where F̄m(V̄ , kωo) ∈ <2 is the kth harmonic of F̄m and V̄n(lωo) ∈ <2 is
the lth harmonic of V̄n.

∂F̄m(V̄ , kωo)
∂V̄n(lωo)

=




∂F R
m(V̄ ,kωo)

∂V R
n (lωo)

∂F R
m(V̄ ,kωo)

∂V I
n (lωo)

∂F I
m(V̄ ,kωo)

∂V R
n (lωo)

∂F I
m(V̄ ,kωo)

∂V I
n (lωo)




This derivative consists of the sum of terms
∂F̄m(V̄ , kωo)

∂V̄n(lωo)
= (7)
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∂Īm(V̄ , kωo)
∂V̄n(lωo)

+
[

0 −kωo

kωo 0

]
∂Q̄m(V̄ , kωo)

∂V̄n(lωo)
+ Ȳmn(kωo, lωo)

Ȳmn(kωo, lωo) =

[
Y R

mn(kωo, lωo) −Y I
mn(kωo, lωo)

Y I
mn(kωo, lωo) Y R

mn(kωo, lωo)

]
(8)

Only the calculation of ∂IR
m(V̄ ,kωo)

∂V R
n (lωo)

will be performed, the calculation of

the other terms in ∂Īm(V̄ ,kωo)
∂V̄n(lωo)

and ∂Q̄m(V̄ ,kωo)
∂V̄n(lωo)

is similar.

Im(V, kωo) =
1
To

∫ To

0
im(v(t))e−kωotdt

IR
m(V̄ , kωo) =

1
To

∫ To

0
im(v(t)) cos (kωot)dt

The function v is considered implicitly to be a function of its frequency-
domain equivalent, V ; so the chain rule can be employed to calculate
the derivative.

∂IR
m(V̄ , kωo)

∂V R
n (lωo)

=
1
To

∫ To

0

∂im(v(t))
∂vn(t)

∂vn(t)
∂V R

n (lωo)
cos (kωot)dt

Now the derivative of vn(t) is calculated.

vn(t) =
∞∑

k=−∞
Vn(kωo)ekωot

vn(t) = V R
n (0) + 2

∞∑

k=1

V R
n (kωo) cos (kωot)− V I

n (kωo) sin (kωot)

For l = 0, the derivative is trivial; for l 6= 0

∂vn(t)
∂V̄n(lωo)

=




∂vn(t)
∂V R

n (lωo)
∂vn(t)

∂V I
n (lωo)


 =

[
2 cos (lωot)
−2 sin (lωot)

]

So if l 6= 0

∂IR
m(V̄ , kωo)

∂V R
n (lωo)

=
2
To

∫ To

0

∂im(v(t))
∂vn(t)

cos (lωot) cos (kωot)dt

=
1
To

∫ To

0

∂im(v(t))
∂vn(t)

[cos ((k + l)ωot) + cos ((k − l)ωot)]dt

Now let Gmn(kωo) ∈ C be the kth harmonic of ∂im(v(t))
∂vn(t) , i.e., let

Gmn(kωo) =
1
To

∫ To

0

∂im(v(t))
∂vn(t)

ekωotdt (9)



Nonlinear Simulation in the Frequency-Domain 7

Then for l = 0

∂Īm(V̄ , kωo)
∂V̄n(0)

=

[
GR

mn(kωo) 0
GI

mn(kωo) 0

]
(10)

and for l 6= 0

∂Īm(V̄ , kωo)
∂V̄n(lωo)

= (11)
[

GR
mn((k + l)ωo) + GR

mn((k − l)ωo) GI
mn((k + l)ωo) + GI

mn((k − l)ωo)
GI

mn((k + l)ωo)−GI
mn((k − l)ωo) GR

mn((k − l)ωo)−GR
mn((k + l)ωo)

]

This completes the calculation of the spectral Jacobian. It may now be
synthesized from (5), (6), (7), (8), (9), (10) and (11).

4. Harmonica
We are currently developing a simulator based on the spectral Newton

algorithm. Unlike previous efforts [4, 7], which were aimed at circuits
containing only one or two nonlinear devices, Harmonica is designed to
quickly analyze large circuits with many nonlinear devices. This advance
is made possible by using spectral Newton, by exploiting the structure
and characteristics of the spectral Jacobian, and by exploiting the linear
and almost-linear behavior of the devices.

The spectral Jacobian is quite large and moderately dense, having
about 4H elements per row or column. Naively applying sparse matrix
techniques is not enough to solve the Newton update equation (4) ef-
ficiently. It is necessary to make some judicious approximations when
constructing and decomposing the Jacobian to reduce the density of the
matrix. The Jacobian is only used to generate new iterates, and is not
used when confirming convergence, so errors from approximations in the
Jacobian only affect the rate and region of convergence, not the accu-
racy of the final solution. An approximate spectral Jacobian results in
the loss of quadratic convergence, but the gain in efficiency more than
makes up for this loss.

In a node admittance matrix, any particular element is the sum of
contributions from zero or more devices. This is also true for the block
node admittance matrix generated by the spectral Newton algorithm.
In the block node admittance matrix, contributions from linear devices
come as diagonal blocks, i.e. only the diagonal 2 × 2 sub-blocks are
nonzero. Nonlinear devices contribute full blocks, however if the device
is behaving almost-linearly the elements on the diagonal of the block
are the largest and as the distance from the diagonal increases their
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magnitude decreases rapidly. This results from (10) and (11), and from
the bandwidth of the derivative spectrum (9) being small if the device
is behaving almost-linearly.

The effort required to LU decompose the spectral Jacobian can be
significantly reduced if two approximations are made. First, in those
blocks that have contributions only from elements behaving linearly or
almost-linearly, the small elements far from the diagonal should be set
to zero and the operations that would normally be performed on these
elements should be avoided. The decision of which elements are small
enough to ignore can be made by comparing the magnitude of the upper
harmonics of the derivative spectrum to some small fraction of the DC
component. The value 10−4Gmn(0) seems to work well. Of those har-
monics smaller than the cutoff criterion, only the first should be kept:
all others should be set to zero. This last nonzero harmonic is called
the guard harmonic. Second, all nonzero fill-ins that result during LU
decomposition from operations involving the guard harmonic should be
ignored. This prevents the bandwidth of the blocks from growing un-
necessarily during the decomposition. These two approximations allow
Harmonica to exploit linear and almost-linear behavior in the circuit.
To get the most from them, pivoting of the block node admittance ma-
trix should be done with the additional goal of exploiting the reduced
bandwidth of the blocks.

The last technique used to accelerate the spectral Newton iteration is
to only occasionally reevaluate the spectral Jacobian [9]. This works well
if the Jacobian is not changing much between iterations. It can greatly
reduce the time required for an iteration because device evaluations and
forward- and backward-elimination of the LU decomposed Jacobian are
much faster than the decomposition of the spectral Jacobian.

Harmonica is written in the C programming language.

5. Results
Execution times for Harmonica are a strong function of the number

of harmonics simulated, the strength of the nonlinear behavior, and the
number of devices behaving nonlinearly. Before applying the techniques
given in the previous section each iteration requires O(N1.5H3) oper-
ations. After applying those techniques, and measuring the execution
times of only a few circuits, each iteration seems to require O(N1.5H) op-
erations. The iteration count remains relatively constant as the number
of harmonics changes.

The times for three circuits are presented in Table 1. The first two
circuits are well-suited to simulation in the frequency-domain and poorly
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suited to time-domain simulation. With the last circuit, the roles are
reversed. The first is a traveling wave amplifier (TWA) [10] that contains
four bipolar transistors and ten transmission lines of noncommensurate
length. Note that the transmission lines are constrained to be ideal by
Spice, Harmonica easily handles lossy and dispersive lines. The second
circuit contains a differential pair and a crystal lattice filter. This circuit
demonstrates the ease with which Harmonica handles high-Q circuits.

The last circuit, a simple noninverting amplifier containing a µA741,
is troublesome to Harmonica because the op amp is internally acting
strongly nonlinear: the large load causing the output stage to operate
class B. This example demonstrates that Harmonica is able to handle
strongly nonlinear circuits, though it may run longer than traditional
simulators.

Since Harmonica is solving an algebraic system of equations, if suf-
ficient harmonics are computed, it can be much more accurate than a
time-domain simulator. This is demonstrated in all the test circuits:
when Harmonica was able to converge with only eight harmonics com-
puted, the maximum error in any harmonic was less than 1ppm. Fur-
thermore, the worst case error resulting from harmonics not computed
was less than 20ppm. These numbers were greatly reduced when more
than eight harmonics are computed. Spice2 computes with a 1000ppm
error tolerance.

6. Conclusions
The spectral Newton method for frequency-domain simulation of non-

linear circuits was described along with techniques used by Harmonica
to increase the efficiency of the method. This method allows circuits
that are behaving quasi-linearly to be quickly simulated, even though
they may be very high-Q or contain many transmission lines.

Work is being done to at least double the speed of the simulator by
further exploiting the structure of the spectral Jacobian.

7. Acknowledgements
We would like to thank Peter Moore for his contributions to Harmon-

ica; nd Jacob White, Howard Ko, and the rest of the Berkeley CAD
research group for many helpful discussions. This work was supported
by Hewlett-Packard and Micro.

Notes
1. In function space, no one can hear you scream [8].
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Harmonica
Circuit Conditions Spice2 harmonics

8 16 32

TWA Vout = 1 V 62,5003 7 22 56

TWA Vout = 0.5 V NA4 6 16 40

Filter 2350 7 20 94

µA741 Vout = 1 V 9 6 13 29
RL = ∞Ω

µA741 Vout = 1 V 13 10 28 63
RL = 10 KΩ

µA741 Vout = 1 V 14 NA5 365 575
RL = 10 KΩ

Table 1. Simulation times for Spice2 and Harmonica for various circuits. Times are
given in seconds and were measured on a VAX 11/785 running UNIX 4.3BSD.

2. To turn a nonlinear device off, simply replace its constitutive equation y = f(x) with
y = 0.

3. This number is an extrapolation made from measurements of times required for smaller
simulation intervals. The desired time interval (two periods) causes memory usage to exceed
UNIX’s 16 MByte limit.

4. This time was not measured.

5. Circuit was behaving too nonlinearly for Harmonica to converge with so few harmon-
ics.
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