
Abstract

With mixed-signal designs becoming more complex
and time-to-market windows shrinking, designers
cannot hope to keep up unless they change the way
they design. They must adopt a more formal process
for design and verification: top-down design. It
involves more than simply a cursory design of the
circuit block diagram before designing the blocks.
Rather, it requires developing and following a for-
mal verification plan and an incremental and
methodical approach for transforming the design
from a abstract block diagram to a detailed transis-
tor-level implementation.

1 Introduction

At the Design Automation Conference in 1998, Ron
Collett of Collett International presented findings
from a 1997 productivity study in which his firm
analyzed 21 chip designs from 14 leading semicon-
ductor firms. The study revealed a productivity gap
of 14× between the most and least productive design
teams. The study also revealed that developing ana-
log and mixed-signal circuitry requires three to
seven times more effort per transistor than designing
digital control logic, though this factor was normal-
ized out of the 14× ratio.

In my experience, the primary culprits behind the
poor productivity of those at the bottom of the scale
are increasingly complex designs combined with a
continued preference for bottom-up (i.e., transistor-
level) design methodology and the occurrence of
simulation late in the design cycle, which leads to
errors and re-spins. There's a huge disparity in pro-
ductivity between those mixed-signal designers who
have transitioned to an effective “top-down” design
methodology and use mixed-signal hardware
description languages (MS-HDLs), and those who
practice “bottom-up” design and rely solely on
SPICE.

1.1 Getting to Market First

With the internet and wireless technology as the lat-
est market drivers, the pace of the electronic market-

place continues to quicken. New products and new
product categories are being created faster than ever
before. In order to keep up with the rapid pace of the
market, designers must get their products to market
more quickly than ever. Those that are successful at
bringing significant new capabilities to the market
first are usually rewarded with higher profit margins
and greater market share. Conversely, those that are
late must face an uphill battle against entrenched
competition. To understand this, consider three sce-
narios for developing a product with Figure 1 show-
ing the expected revenue for each scenario. For the

first, consider employing an efficient product devel-
opment process and being first to market. For the
second, consider using the same number of develop-
ers with an inefficient development process, which
causes the product to be late to market. This results
in a much lower return because the product enters a
market where a competitor has already established
leadership position and because there are fewer
available customers left. Finally, consider using an
inefficient development process but increasing the
number of developers in order to reach the market
first. If this were possible, the development costs are
higher, but the total return is almost the same as in
the first case. This is because the returns are
expected to be much greater than the initial develop-
ment costs.

This example illustrates why it is more important to
get a product to the market first than it is to control
development costs. Of course this assumes that the
product is the right product in that it satisfies the
customers needs, and that it has some new and valu-

This paper was presented at the Advances in Analog Circuit
Design, April 2000 workshop in Germany and published in Ana-
log Circuit Design, R.J. van de Plassche, J.H. Huijsing and
W.M.C. Sansen (editors), Kluwer Academic Publishers, Novem-
ber 2000. Last updated on April 2, 2001.
Contact the author via e-mail at kundert@cadence.com.

Fig. 1. The expected investment and return for the same
product developed using three different approaches.

$

time

$

time

Incremental Investment and Return

Accumulated Investment and Return

Efficient and Timely Inefficient and Untimely Inefficient but Timely

A Formal Top-Down Design Process for Mixed-Signal Circuits
Ken Kundert

Cadence Design Systems, San Jose, California, USA

able capability. With follow on products, the situa-
tion is somewhat different. Here, the market
leadership position is largely determined and the
need to develop the product in a timely manner is
balanced by the need to control development costs.

1.2 Design Productivity Gap

Moore’s observation that the number of transistors
available on an integrated circuit doubles every 18 to
24 months continues to hold. Competitive pressures
compel designers to use these transistors to provide
additional functionality and to increase the integra-
tion level and thereby decreasing the size, weight,
power and cost of the product. As a result, designers
are confronted with larger and more complex
designs. The increasing size and complexity of these
designs combines with the shrinking time available
to develop and get them to market; making the job of
the circuit designer today much more difficult than
in the past.

Circuits are getting more complex in two different
ways at the same time. First, circuits are becoming
larger. Consider wireless products. 40 years ago a
typical receiver contained between 5 and 10 transis-
tors whereas it is common for a modern cell phone
to contain 10M transistors. Second, the operation of
the circuits are becoming more complex. 30 years
ago integrated circuits generally consisted of simple
functional blocks such as op-amps and gates. Verifi-
cation typically required simulating the block for
two or three cycles. Today, mixed-signal chips
implement complex algorithms that require design-
ers to examine their operation over thousands of
cycles. Examples include PLLs, Σ∆ converters,
magnetic storage PRML channels, and CDMA
transceivers. The result of these two effects together
is that complexity is increasing at a blistering pace,
and is outstripping the designers ability to keep up.

The CAD tools and computers employed by design-
ers continually improve, which serves to increase the
productivity of designers. However, the rate of pro-
ductivity increase is not sufficient to allow the
designers to keep up with the increasing complexity
of designs and decreasing time-to-market require-
ments. The growing difference between the
improvement in productivity needed to satisfy the
demands of the market and the productivity avail-
able simply by using the latest CAD tools and com-
puters is referred to as the Design Productivity Gap,
and is shown in Figure 2. To close this gap, one must
change the way design is done. A design style that
reduces the number of serial steps, increases the
likelihood of first time working silicon, and

increases the number of designers that can work
together effectively is needed. If a design group fails
to move to such a design style, it will become
increasingly ineffective. It eventually will be unable
to get products to market in a time of relevance and
so will be forced out of the market.

2 Bottom-Up Design

The traditional approach to design is referred to as
bottom-up design. In it, the design process starts
with the design of the individual blocks, which are
then combined to form the system. The design of the
blocks starts with a set of specifications and ends
with a transistor level implementation. At this point,
each block is verified as a stand-alone unit against
specifications and not in the context of the overall
system. Once verified individually, the blocks are
then combined and verified together, but at this point
the entire system is represented at the transistor
level.

While the bottom-up design style continues to be
effective for small designs, large designs expose
several important problems in this approach.
• Once the blocks are combined, simulation takes a

long time and verification becomes difficult and
perhaps impossible. The amount of verification
must be reduced to meet time and compute con-
straints. Inadequate verification may cause
projects to be delayed because of the need for extra
silicon prototypes.

• For complex designs, the greatest impact on the
performance, cost and functionality is typically
found at the architectural level. With a bottom-up
design style, little if any architectural exploration
is performed, and so these types of improvements
are often missed.

• Any errors or problems found when assembling
the system are expensive to fix because they
involve redesign of the blocks.

• Communication between designers is critical, yet
an informal and error prone approach to communi-

Fig. 2. IC process technology is improving faster than IC
design technology, creating the design productivity gap.

Manufacturing Capability

Design Capability

T
ra

ns
is

to
rs

0.18µ
2000

0.5µ
1995

1.0µ
1990

Gap

cation is employed. In order to assure the whole
design works properly when the blocks are com-
bined, the designers must be in close proximity
and must communicate often. With the limited
ability to verify the system, any failure in commu-
nication could result in the need for additional sili-
con prototypes.

• Several important and expensive steps in the bot-
tom-up design process must be performed serially,
which stretches the time required to complete the
design. Examples include system-level verification
and test development.

The number of designers than can be used effec-
tively in a bottom-up design process is limited by the
need for intensive communication between the
designers and the inherently serial nature of several
of the steps. The communication requirements also
tend to require that designers be co-located.

3 Top-Down Design

In order to address these challenges, many design
teams are either looking to, or else have already
implemented, a top-down design methodology. In a
basic top-down approach, the architecture of the
chip is defined as a block diagram and simulated and
optimized using either a MS-HDL simulator or a
system simulator. From the high-level simulation,
requirements for the individual circuit blocks are
derived. Circuits are then designed individually to
meet these specifications. Finally, the entire chip is
laid out and verified against the original require-
ments.

This represents the widely held view of what top-
down design is. And while this is a step towards top-
down design, it only addresses one of the issues with
bottom-up design and there is much more that can be
done. To overcome the remaining issues, one must
go further. Also needed is a formal verification plan-
ning procedure and a mixed-level simulation strat-
egy [4]. Both act to reduce risk and are added with
the understanding that with complex mixed-signal
circuits, complete final transistor-level verification
is at a minimum very expensive and is often imprac-
tical. With careful planning one can use mixed-level
simulation to move the verification up in the design
process where it is less expensive and so can be
more comprehensive. It also tends to find errors ear-
lier in the design process when recovery is easier
and less expensive.

A well designed top-down design process methodi-
cally proceeds from architecture- to transistor-level
design. Each level is fully designed before proceed-

ing to the next and each level is fully leveraged in
design of the next. It acts to partition the design into
smaller, well defined blocks, and so allows more
designers to work together productively. This tends
to reduce the total time required to complete the
design. A top-down design process also formalizes
and improves communications between designers.
This reduces the number of flaws that creep into a
design because of miscommunication. The formal
nature of the communication also allows designers
to be located at different sites and still be effective.

Following a top-down design methodology also
reduces the impact of changes that come late in the
design cycle. If, for whatever reason, the circuit
needs to be partially redesigned, the infrastructure
put in place as part of the methodology allows the
change to be made quickly. The models can be
updated and impact on the rest of system can be
quickly evaluated. The simulation plan and the infra-
structure for mixed-level simulations is already be
available and can be quickly applied to verify any
changes.

3.1 Chip Architect

The chip architect is a new member of the design
team. He or she is the leader of the top-down design
process and is expected to develop the simulation
and modeling plans and to coordinate with the other
designers to assure that the plans are followed. The
primary responsibility of the chip architect is to
assure that the system operates as expected when
finally implemented. This must be a designer that
has experience in the type of system being designed
so that he or she can anticipate and plan for issues
that are likely to occur. Preferably, the experience
covers aspects of both system and block design. The
chip architect may be the system engineer, the one
that actually designs the block diagram, but it need
not be. However, the chip architect should not also
have block design responsibilities. Block design has
a tendency of consuming an engineer.

The chip architect should be comfortable with mod-
eling and MS-HDLs to the point where he or she can
write the descriptions of both the system and the
individual blocks. Since most designers are not
skilled at modeling and not familiar with MS-HDLs,
the chip architect would train the other engineers on
the project on the use of MS-HDLs. However, it is
important to recognize that modeling is a skill that is
distinct from design. Designer often have neither the
skill nor the inclination to write sophisticated mod-
els. If sophisticated models are required, they gener-
ally must be developed by the chip architect.

The chip architect must have a good understanding
of simulation. In particular, where and how simula-
tion can be used to verify areas of concern in the
design, and where it cannot. This knowledge is
leveraged heavily during the development of the
simulation plan.

The chip architect owns the top-level schematic for
the design. This schematic must be captured before
any block design begins, even though it is likely to
change before the design is complete. The top-level
schematic specifies the partitioning of the design
into blocks and the interface for each block. So each
block should be “pin-accurate”. By this is it meant
that in the top-level schematic, each block, and each
pin on each block, is represented, and the type of
each pin is carefully defined and documented. For
example, an enable line on a block may be denoted
“3V CMOS active high” or a trigger line may be
described with “5V TTL positive edge triggered”. In
this way, the top-level schematic provides clarity of
intention to the design team.

Once the top-level schematic is captured, the top-
level models are written, usually by the chip archi-
tect, and the system completely verified according
the simulation plan. The top-level schematic and
models are then distributed to everyone on the
design team. As the design progresses, the chip
architect coordinates any changes to the block inter-
faces, and then distributes updated models of the
system or the blocks to the team. As the block
designers work, they provide transistor-level sche-
matics (pre- and post-layout) to the chip architect,
who verifies them with mixed-level simulation,
again according to the simulation plan, before
accepting them.

During the design phase, the chip architect works
with the test engineers to develop the test plan and
test programs. The availability of a working model
of the system early in the design process allows test
engineers to begin the development and testing of
test programs early. Moving this activity, which
used to occur exclusively after the design was com-
plete, so that it starts at the same time the block
design begins significantly reduces the time-to-pro-
duction [1,2,3,11]. Bringing test development into
the design phase can reduce post-silicon debug time
by 50% and can eliminate a turn by finding chips
that are untestable early. It can also improve tests,
which then improves yield.

3.2 Simulation and Modeling Plans

An important focus in a good top-down design
methodology is the development of a comprehensive
simulation plan, which in turn leads to a modeling
plan. This is done by the chip architect with input
from the whole design team. The process begins by
identifying particular areas of concern in the design.
Plans are then developed for how each area of con-
cern will be verified. The plans specify how the tests
are preformed, and which blocks are at the transistor
level during the test. For example, if an area of con-
cern is the loading of one block on another, the plan
might specify that one test should include both
blocks represented at the transistor level together.
For those blocks for which models are used, the
effects required to be included in the model are iden-
tified for each test. This is the beginning the model-
ing plan. Typically, many different models will be
created for each block. These models may be written
either by the chip architect or the block designer.

It is important to resist the temptation to specify and
write models that are more complicated than neces-
sary. Start with simple models and only model addi-
tional effects as needed (and as spelled out in the
modeling plan). Also, the emphasis when writing
models should be to model the behavior of the block,
not its structure. A simple equation that relates the
signals on the terminals is preferred to a more com-
plicated model that tries to mimic the internal work-
ing of the block. This is counter to the inclination of
most designers, whose intimate knowledge of the
internal operation of the block usually causes them
to write models that are faithful to the architecture of
the block, but more complicated than necessary.

It is also not necessary to model the behavior of a
circuit block outside its normal operating range.
Instead, you can add code in a model that looks for
inappropriate situations and reports them. Consider a
block that supports only a limited range of input
biases. It is not necessary to model the behavior of
the block when the input is outside the desired range
if in a properly designed circuit it will never operate
in that mode. It is sufficient to simply generate a
warning that an undesirable situation has occurred.

Following these general rules will result in faster
simulations and less time spent writing models.

A formal planning process generally results in more
efficient and more comprehensive verification,
meaning that more flaws are caught early and so
there are fewer design iterations. The simulation and
test plans are applied initially to the high-level
description of the system, where they can be quickly

debugged. Once available, they can be applied dur-
ing the mixed-level simulations of the blocks, reduc-
ing the chance that errors will be found late in the
design cycle.

3.3 System-Level Verification

System-level design is generally performed by sys-
tem engineers. Their goal is to find an algorithm and
architecture that implement the required functional-
ity while providing adequate performance at mini-
mum cost . They typical ly use system-level
simulators, such as Simulink or SPW [7,10], that
allow them to explore various algorithms and evalu-
ate trade-offs early in the design process. These tools
are preferred because they represent the design as a
block diagram, they run quickly, and they have large
libraries of predefined blocks for common applica-
tion areas.

This phase of the design provides a greater under-
standing of system early in the design process. It
also allows a rapid optimization of the algorithm and
moves trades to the front of design process where
changes are inexpensive and easy to make. Unwork-
able approaches are discarded early. Simulation is
also moved further up in the design process where it
is much faster and can also be used to help partition
the system into blocks and budget their performance
requirements.

Once the algorithm is chosen, it must be mapped to a
particular architecture. Thus, it must be refined to
the point where the blocks used at the system level
accurately reflect the way the circuit is partitioned
for implementation. The blocks must represent sec-
tions of the circuit that are to be designed and veri-
fied as a unit. Furthermore, the interfaces must be
chosen carefully to avoid interaction between the
blocks that are hard to predict and model, such as
loading or coupling. The primary goal at this phase
is the accurate modeling of the blocks and their
interfaces. This contrasts with the goal during algo-
rithm design, which is to quickly predict the output
behavior of the entire circuit with little concern
about matching the architectural structure of the chip
as implemented. As such, mixed-signal hardware
description languages (MS-HDLs) such as Verilog-
AMS [11] or VHDL-AMS [13] become preferred
during this phase of the design because they allow
accurate modeling of the interfaces and support
mixed-level simulation.

The transition between algorithm and architecture
design currently represents a discontinuity in the
design flow. The tools used during algorithm design
are different from the ones used during architecture

design, and they generally operate off of different
design representations. Thus, the design must be re-
entered, which is a source of inefficiencies and
errors. It also prevents the test benches and con-
straints used during the algorithm design phase from
being used during the rest of the design.

On the digital side, tools such as SPW do provide
paths to implementation via Verilog and VHDL gen-
eration. Similar capabilities do not yet exist for the
analog or mixed-signal portions of the design. An
alternative is to use Verilog-AMS or VHDL-AMS
for both algorithm and architecture design. This has
not been done to date because simulators that sup-
port these languages are just now becoming avail-
able. It will probably take a while for this approach
to become established because of the absence of
application specific libraries needed for rapid sys-
tem-level exploration.

3.4 Mixed-Level Simulation

Digital synthesis maps digital behavior onto digital
gates that are arranged in a rather constrained topol-
ogy. The simple nature of gates combined with the
constrained topology makes synthesis feasible. With
analog circuitry, the fundamental building blocks are
much more complex and varied and the topology is
completely unconstrained. These two factors make
analog synthesis a fundamentally much more diffi-
cult problem than digital synthesis. Analog synthesis
so far has resisted all attempts at automation except
in limited cases, such as analog filters. Work contin-
ues, but we are still far from having universal analog
synthesis.

Without analog synthesis, analog design is done the
old fashioned way, with designers manually convert-
ing specifications to circuits. While this allows for
more creativity, it also results in more errors, partic-
ularly those that stem from miscommunication.
These miscommunications result in errors that pre-
vent the system from operating properly when the
blocks are assembled even though the blocks were
thought to be correct when tested individually.

To overcome this problem, mixed-level simulation
is employed in a top-down design methodology for
analog and mixed-signal circuits (this represents a
significant but essential departure from the digital
design methodology). Mixed-level simulation is
required to establish that the blocks will function as
designed in the overall system.

To verify a block with mixed-level simulation, the
model of the block in the top-level schematic is
replaced with the transistor level schematic of the

block before running the simulation. The system,
described at a high level, acts as a test-bench for the
block, which is described at the transistor level.
Thus, the block is verified in the context of the sys-
tem, and it is easy to see the effect of imperfections
in the block on the performance of the system.
Mixed-level simulation requires that both the system
and the block designers use the same simulator and
that it be well suited for both system- and transistor-
level simulation.

Mixed-level simulation allows a natural sharing of
information between the system and block design-
ers. When the system-level model is passed to the
block designer, the behavioral model of a block
becomes an executable specification and the descrip-
tion of the system becomes an executable test bench
for the block. When the transistor level design of the
block is complete, it is easily included in the system-
level simulation by the chip architect.

Mixed-level simulation is the only feasible approach
currently available for verifying large complex
mixed-signal systems. Some propose to use either
timing simulators (sometimes referred to as fast or
reduced accuracy circuit simulators) or circuit simu-
lators running on parallel processors. However, both
approaches defer system-level verification until the
whole system is available at transistor level, and nei-
ther provide the performance nor the generality
needed to verify most mixed-signal systems.

Successful use of mixed-level simulation requires
careful planning and forethought. And even then,
there is no guarantee that it will find all the problems
with a design. However, it will find many problems,
and it will find them much earlier in the design pro-
cess, before full-chip simulations, when they are
much less costly to fix. And with mixed-level simu-
lation, it is possible to run tests that are much too
expensive to run with full-chip simulation.

3.5 Bottom-Up Verification

Once a block is implemented, one could update the
models that represent it to more closely mimic its
actual behavior. This improves the effectiveness of
mixed-level and system-level simulation and is
referred to as bottom-up verification. To reduce the
chance of errors, it is best done during the mixed-
level simulation procedure. In this way, the verifica-
tion of a block by mixed-level simulation becomes a
three step process. First the proposed block function-
ality is verified by including an idealized model of
the block in system-level simulations. Then, the
functionality of the block as implemented is verified
by replacing the idealized model with the netlist of

the block. This also allows the effect of the block’s
imperfections on the system performance to be
observed. Finally, the netlist of the block is replaced
by an extracted model. By comparing the results
achieved from simulations that involved the netlist
and extracted models, the functionality and accuracy
of the extracted model can be verified. From then
on, mixed-level simulations of other blocks are
made more representative by using the extracted
model of the block just verified rather than the ideal-
ized model.

When done properly, bottom-up verification allows
the detailed verification of very large systems. The
behavioral simulation runs quickly because the
details of the implementation are discarded while
keeping the details of the behavior. Because the
details of the implementation are discarded, the
detailed behavioral models generated in a bottom-up
verification process are useful for third-party IP
evaluation and reuse.

Though bottom-up verification is helpful when veri-
fying the performance of large systems, it is rarely
done today. Generating behavioral models that
include the detailed behavior of even simple blocks
can be difficult and requires a specialized skill not
commonly found in the design team. This situation
is not expected to change until automated tools and
methodologies develop to generate detailed behav-
ioral models. Such tools are beginning to appear, but
they are still in a very immature state.

Mixed-level simulation is currently the best
approach to verifying large mixed-signal systems
that are designed with a top-down methodology.
However, eventually systems will be too large to
completely verify with mixed-level simulation, in
which case a bottom-up verification approach will
become necessary.

3.6 Final Verification

In a top-down design process, SPICE-level simula-
tion is used judiciously in order to get its benefits
without incurring its costs. All blocks are simulated
at the transistor level in the context of the system
(mixed-level simulation) in order to verify their
functionality and interface. Areas of special concern,
such as critical paths, are identified up front and sim-
ulated at the transistor level. The performance of the
circuit is verified by simulating just the signal path
or key pieces of it at the transistor level. Finally, if
start-up behavior is a concern, it is also simulated at
the transistor level. The idea is not to eliminate
SPICE simulation, but to reduce the time spent in

SPICE simulation while increasing the effectiveness
of simulation in general by careful planning.

4 Mixed-Signal Hardware Description Languages

Both Verilog-AMS and VHDL-AMS have been
defined and simulators that support these languages
are emerging. These languages are expected to have
a big impact on the design of mixed-signal systems
because they provide a single language and a single
simulator that are shared between analog and digital
designers. It will be much easier to provide a single
design flow that naturally supports analog, digital
and mixed-signal blocks, making it simpler for these
designers to work together. It also becomes substan-
tially more straight-forward to write behavioral
models for mixed-signal blocks. Finally, the AMS
languages bring strong event-driven capabilities to
analog simulation, allowing analog event-driven
models to be written that perform with the speed and
capacity inherited from the digital engines.

It is important to recognize that the AMS languages
are primarily used for verification. Unlike the digital
languages, the AMS languages will not be used for
synthesis in the foreseeable future because the only
synthesis that is available for analog circuits is very
narrowly focused.

4.1 Verilog-AMS

Verilog-A is an analog hardware description lan-
guage patterned after Verilog-HDL [6]. Verilog-
AMS combines Verilog-HDL and Verilog-A into a
MS-HDL that is a super-set of both seed languages
[11]. Verilog-HDL provides event-driven modeling
constructs, and Verilog-A provides continuous-time
modeling constructs. By combining Verilog-HDL
and Verilog-A it becomes possible to easily write
efficient mixed-signal behavioral models. A unique
feature of Verilog-AMS is that it provides automatic
interface element insertion so that analog and digital
models can be directly interconnected even if their
terminal / port types do not match. It also provides
support for real-valued event-driven nets and back
annotating interconnect parasitics.

A commercial version of Verilog-AMS that also
supports VHDL is expected soon from Cadence
Design Systems.

4.2 VHDL-AMS

VHDL-AMS [8,9,13] adds continuous time model-
ing constructs to the VHDL event-driven modeling
language [5]. Like Verilog-AMS, mixed-signal
behavioral models can be directly written in VHDL-

AMS. Unlike with Verilog, there is no analog-only
subset.

VHDL-AMS inherits support for configurations and
abstract data types from VHDL, which are very use-
ful for top-down design. However, it also inherits
the strongly typed nature of VHDL, which creates
problems with mixed-signal designs. Within VHDL-
AMS you are not allowed to directly interconnect
digital and analog ports, and there is no support for
automatic interface element insertion built-in to the
language. In fact, you are not even allowed to
directly connect ports from an abstract analog model
(a signal flow port) to a port from a low-level analog
model (a conservative port). This makes it difficult
to support mixed-level simulation. These deficien-
cies have to be overcome by a simulation environ-
ment, making VHDL-AMS much more dependent
on its environment. This should slow deployment of
effective VHDL-AMS-based flows.

A commercial version of VHDL-AMS that also sup-
ports Verilog is available from Mentor Graphics
[14].

5 Mixed-Level Simulation Example

Though this example is several years old, it is repre-
sentative of the type of circuit complexity that is
becoming mainstream today. It is a PRML channel
chip that is difficult to simulate for two reasons.
First, it is a relatively large circuit that involves both
analog and digital sections that are closely coupled.
Second, the architecture involves complex feedback
loops and adaptive circuits that take many cycles to
settle. The combination of many transistors and
many cycles combines with the result being a simu-
lation that is so expensive as to be impractical. In
this case, the expected simulation time was predicted
to be greater than a month.

The traditional approach to simulating a complex
circuit like this is to simulate the blocks individually.
Of course this verifies that the blocks work individu-
ally, but not together. In addition, for this circuit it is
difficult to verify the blocks when operating outside
the system, and it is difficult to predict the perfor-
mance of the system just knowing the performance
of the individual blocks.

When the architecture was simulated at a high level
with each block represented by a pin-accurate
behavioral model, the simulation time was less than
10 minutes. Then, when a single block was run at the
transistor level, the simulation ran overnight. Even
though the full system was never simulated at the
transistor level, it worked the first time because this

methodology verified the blocks in the context of the
system and it verified the interfaces between the
blocks.

6 Development of Chip Architects

The primary barrier to widespread adoption of a for-
mal top-down design style for complex mixed-signal
circuits is a lack of engineers with the skills and
training to be chip architects. A chip architect must
• Be fluent in an AMS language and skilled in the

art of modeling
• Be an experienced designer
• Have a good understanding of the top-down design

process
• Be proficient in the use of circuit and AMS simu-

lation
• Have the ability to lead and manage complex

projects

Given the high pressure world that most designers
live in, it is unlikely that they will be able to acquire
such a broad and deep set of skills while on the job,
even if they are motivated to do so. Rather, it is
important for their employers to look for engineers
that have the interest and the relevant background
and invest the time and training to develop them into
chip architects. In addition, it is essential that appro-
priate training becomes available from universities
and continuing education centers.

It may take some time to develop chip architects
with all of the skills listed above. In the mean time,
the role of the chip architect represents a new set of
skills, duties, and responsibilities that must be
present in the design team and shared amongst its
members. Perhaps one of the most difficult skills to
develop in a chip architect is that of design experi-
ence. However, experience in the chip-architect can
be traded-off against experience in the design group.
If the chip-architect has little design experience, then
the other members of the design group must be more
experienced, and therefore more senior designers.
The chip architect then leverages the experience of
the team when developing the simulation and mod-
eling plans. However, if the chip-architect is experi-
enced, then the remaining members of the design
group need not be as experienced and may be staffed
with more junior engineers. One of the more impor-
tant roles of the chip architect then becomes educat-
ing the team on what the system issues are, and how
to model and simulate them.

7 Conclusion

A formal top-down design methodology requires a
significant investment in time and training and a
serious commitment throughout the design process if
it is to be successful. However, it is much easier the
second time around and once mastered provides dra-
matic returns. Fewer design iterations are needed,
which results in a shorter and more predictable
design process. More optimal designs are produced
that are better verified. Finally, it allows design
teams to be larger and more dispersed, giving the
option of trading a higher initial investment for a
shorter time-to-market.

Acknowledgments

Much of the material presented is based on discus-
sions with Dan Jefferies and Henry Chang of
Cadence Design Systems and Jim Holmes of Texas
Instruments.

Bibliography
[1] C. Force, T. Austin. Testing the design: the evolution

of test simulation. International Test Conference,
Washington 1998.

[2] C. Force. Integrating design and test using new tools
and techniques. Integrated System Design, February
1999.

[3] Dantes virtual test environment, www.virtualtest.com.
[4] J. Holmes, F. James, and I. Getreu. Mixed-Signal

Modeling for ICs. Integrated System Design Maga-
zine, June 1997.

[5] VHDL Language Reference Manual, IEEE Standard
1076-1993.

[6] Standard Description Language Based on the Ver-
ilogTM Hardware Description Language, IEEE Stan-
dard 1364-1995.

[7] Matlab and Simulink, www.mathworks.com.
[8] E. Christen, K. Bakalar. VHDL-AMS — a hardware

description language for analog and mixed-signal ap-
plications. IEEE Transactions on Circuits and Sys-
tems II: Analog and Digital Signal Processing, vol.
46, no. 10, Oct. 1999, pp. 1263-1272.

[9] Definitions of Analog and Mixed-Signal Extensions to
IEEE Standard VHDL. IEEE Standard 1076.1-1999.

[10] Signal-Processing Worksystem User’s Guide. Ca-
dence Design Systems, San Jose, CA.

[11] SpectreVX and SaberVX virtual test environments,
www.teradyne.com.

[12] Verilog-AMS Language Reference Manual: Analog &
Mixed-Signal Extensions to Verilog HDL, version 2.0.
Open Verilog International, 2000. Available from
www.ovi.org.

[13] VHDL-AMS, www.vhdl.org/analog.
[14] VHDL-AMS simulators, www.vhdl-ams.com.

