Applying Top-Down Verification Concepts to Compact Models

Ken Kundert
12 October 2005
Design Challenges

• Functionality
 – Many standards
 – Adaptable to different end products

• Performance
 – Specifications and exceeding them
 – Low power

• Cost
 – High yield
 – Small die area

• All before the holidays!
 – Design productivity
 – Design quality
 – Fast ramp to volume

• Repeatable
Fierce Competition

ICs
Only one is designed in

Prototypes
Only one is sold

End Products

No margin for error!
Verification Issues

• Chip function
• Chip performance
• Block performance
Outline

- Design Challenge
- Verification Challenge
- Addressing the Challenge
 - Methodology
 - Compact Model’s Role
- Conclusion
Verification

Circuits becoming larger
- Design groups larger & more dispersed
- Vdd dropping, topologies disappearing
- More digital

Behavior becoming more complex
- Circuits becoming more algorithmic
- $\triangle \Sigma$ and randomization
- Modulated carriers
- Auto calibration, correction and adaptation
- More digital

Variability
- Monte Carlo
- Corners

More operating modes
- Standards & regions
- Power saving
- Grades
- Test
- CYA
Verification Options?

- Consider just 3 dimensions of complexity
 - Assume each is growing at Moore’s law like rates (2x in 2 years)
- That is 8x every two years
 - 64x every election cycle
- Where can we find such speed-ups?
 - Improved algorithms?
 - Hardware improvements?
 - Special-purpose simulators?
Fast-SPICE Simulators

• Provide 5-10x SPICE with same accuracy
 – HSim, NanoSim, UltraSim, etc.

Not with Analog!

• 0.75-2x on analog and mixed-signal
• No AC, no noise, no RF
• Sacrifice accuracy
• Not as robust
Parallel Processing

• Processor performance has leveled off
• Multi-core era begins

• However:
 – Simulation notoriously difficult to parallelize
 – Will take a while
RF Simulators

• Exploit nature of RF circuits to run efficiently
 – Assume sparse spectrum, few harmonics
Assumptions of RF Simulators

• Only one type of signal present
 – Quasiperiodic with few fundamentals (≤ 3),
 – Or slowly modulated periodic carrier
• Small number of harmonics
• Small number of oscillator modes (≤ 1)
• Near-linear signal path
• No Verilog or VHDL
 – Purely transistor level
 – Verilog-A okay if no hidden state
Consequences of Assumptions

• RF simulators provide many analyses
 – Each suitable for a small range of situations
 – SpectreRF: PSS, PAC, PXF, PNoise, PSP, Envelope, QPSS, QPAC, QPXF, QPNoise, QPSP
 – Many situations still not covered
 • Ex., semi-autonomous and poly-autonomous circuits
→ Analyses often cannot be applied to heterogeneous circuits
 – They are too constrained!
Heterogeneous Systems

• Result from need for higher integration
 → Leads to larger, more diverse systems
 – Examples: Transceiver with …
 • Synthesizer
 • Converters

• Result from more challenging requirements
 → Leads to increasing use of error correction
 – Examples …
 • Adaptive filtering, biasing and predistortion
 • Offset, gain, quadrature error correction
 • Modes
 • Sub-ranging
RF Simulators

✔ Work well on individual functional blocks
 – Amplifiers, mixers, oscillators, filters, etc.
 – Segments of RF signal path

✘ Work poorly on algorithmic blocks
 – ADC, DAC, PLL (frequency synthesizer)
 – Anything ΔΣ

✘ Work poorly on heterogeneous systems
 – Full transmitter or receiver
 – Digital calibration or adaptation
Verification Options?

• Improved algorithms?
 ✗ Timing simulators
• Hardware improvements?
 ✗ Parallel processing
• Special-purpose simulators?
 ✗ RF simulation
• All three together ???
Transistor Only Simulation

• Full system verification occurs too late
 – Errors are expensive to fix
 • Cause redesign of blocks
 • Impacts schedule
• Does not address communication issues
 – Root cause of system level errors
• Is very expensive
 – Reduces amount of verification performed
Verification Options?

• Improved algorithms?
 ✗ Timing simulators
• Hardware improvements?
 ✗ Parallel processing
• Special-purpose simulators?
 ✗ RF simulation
• All three together?
 ✗ Transistor-level simulation
• Avoidance ???
Cost of Not Verifying

• Currently nobody fully verifies their designs
 – Is much too expensive
• Result is functional errors
 – At the interfaces
 – In the margins
Outline

• Design Challenge
• Verification Challenge
• Addressing the Challenge
 – Methodology
 – Compact Model’s Role
• Conclusion
Model-Based Verification

• Replace transistor-level circuits with models
 – Run much faster
 – Available before block is designed

• Then verify that models match circuit
 – Simulate one block at a time
 – Each block can be simulated in parallel
Top-Level Simulation with Models

- Verifies that performance with model meets expectations
- Verifies consistency between models
Verifying the Model

• Verifies consistency between model & circuit in detail
• If too slow, further decompose
Goal for a Behavioral Model

• Model a block …
 – Include all relevant effects with sufficient accuracy
 – Execute as fast as possible
 – Make a verification model, not a design model
 – Make a functional model, not a performance model

• Do not over model!
Mixed-Level Simulation

- Evaluate block in context of entire system
 - The system becomes the test bench for block
- Further verifies consistency between model & circuit
- Each model must be pin-accurate
This is Top-Down Verification

• Verification traceable to transistor level
• Produces both ...
 – Verified circuit
 – Verified models
 • Useful for IP delivery and reuse
• Driven by verification engineer
 – Peer to design lead
Why Top-Down Verification?

- Verifies hierarchically
 - Only approach fast enough for complex MS designs
 - Timing simulation too slow, accuracy problematic
 - RF simulation too constrained
- Improves design process
 - Reduces errors by formalizing communication
 - Moves verification earlier
- Improves test development process
 - Moves test development earlier
 - Allows test engineer to affect design
Design vs. Verification

Design
- Excel, Matlab, Models
- Topology selection
- Parameter selection
- Focus is achieving performance

Verification
- Functional verification
- Performance verification
- Regression testing
- Monte Carlo / corners
- Focus is on verifying functionality

Design Engineer
Verification Engineer
Outline

• Design Challenge
• Verification Challenge
• Addressing the Challenge
 – Methodology
 – Compact Model’s Role
• Conclusion
Goal for a Compact Model

- Model a device...
 - Include all relevant effects with sufficient accuracy
 - Execute as fast as possible
 - Value of extra accuracy is marginal
 - Value of extra speed is huge
 - It makes up 75-90% of simulation time
What is Relevant?

• It is situation specific
 – Pre-layout vs. post-layout
 – Design phase vs. verification phase
 – Application area
 • Thermal (static)
 • Thermal (dynamic)
 • Charge storage
 • Small-geometry
 • Digital
 • Proximity effects
 • High frequency
 • Noise
 • Variability
 • Latch-up
 • Leakage
 • Stress, etc.
Compact Modeling and TDV

• With top-down verification …
 – It is important not to over model
 – Same is true of transistor models
 • Compact models still dominate simulation time

• Compact models should …
 – Separate the concerns
 • Allow effects to be enabled on a per instance basis
 – Provide multiple levels of accuracy
Examples

- Power-up simulations
- Signal transmission simulations
- Heterogeneous systems, such as
 - RF transceiver
 - LNA, Osc, PA, synthesizer, etc.
Everything in Model

• One model that incorporates all effects
• One .model statement
• User enables/disables effects on a per instance or per block basis
 – Complex mixed-signal chips will have sections that have different concerns
• Compiler produces custom versions
Conclusion

• The design process is bifurcating into design and verification disciplines

• Design and verification engineers need different models
 – High detail and accuracy for design
 – Simple and fast for verification

• Should be the same model
 – Model compilers will produce optimized versions
Designer’s Guide Community
www.designers-guide.org

Designer’s Guide Consulting
www.designers-guide.com
ken@designers-guide.com