Fast Simulation Algorithms for RF Circuits

R. Telichevesky, K. Kundert
Cadence Design Systems
San Jose, California

Abstract

RF integrated circuit designers make extensive use
of simulation tools which perform nonlinear periodic
steady-state analysis and its extensions. However, the
computational costs of these simulation tools have re-
stricted users from examining the detailed behavior
of complete RF subsystems. Recent algorithmic de-
velopments, based on matrix-implicit iterative meth-
ods, is rapidly changing this situation and provid-
ing new faster tools which can easily analyze circuits
with hundreds of devices. In this paper we present
these new methods by describing how they can be
used to accelerate finite-difference, shooting-Newton,
and harmonic-balance based algorithms for periodic
steady-state analysis.

1 Introduction

The intensifying demand for very high perfor-
mance portable communication systems has greatly
expanded the need for simulation algorithms that can
be used to efficiently and accurately analyze frequency
response, distortion, and noise of RF communica-
tion circuits such as mixers, switched-capacitor filters
and narrow-band amplifiers. Although methods like
multitone harmonic balance, linear time-varying, and
mixed frequency-time techniques [6, 3, 1, 4] can per-
form these analyses, the traditional implementations
of these techniques grow so rapidly with increasing
circuit size that they have been too computationally
expensive to use for more complex circuits.

Recent algorithmic developments, based on pre-
conditioned matrix-implicit Krylov-subspace iterative
methods, is rapidly changing the situation and pro-
viding new tools which can easily analyze circuits
with hundreds of devices. Preconditioned iterative
techniques have been applied to accelerating peri-
odic steady-state analysis using both harmonic bal-
ance methods [2, 5] and time-domain shooting meth-

*This work was supported by a grants from Motorola and
Cadence Design Systems

21.1.1

0-7803-3177-6 $5.00 © 1996 IEEE

I. Elfadel, J. White

Massachusetts Institute of Technology

Cambridge, Massachusetts

ods [9]. Additional results for more general analyses
are also under investigation.

In this tutorial paper, we try to present these accel-
erated methods for periodic steady-state analysis in a
cohesive fashion, and perhaps make the more special-
ized papers that have or will shortly appear a little
more approachable. We start in the next section by
presenting the time domain finite-difference-Newton
and shooting-Newton methods, give a brief idea of
their computational costs using standard factoriza-
tion, and give the faster matrix-implicit algorithm. In
section three we present, using as much common no-
tation as possible, the same aspects of the harmonic-
balance approach. Where possible, we give some com-
putational results so as to give the reader a feel for
the cost reductions. Also, we have tried to pay partic-
ular attention to providing approachable references in
the mathematical literature. Finally, conclusions and
acknowledgements are given in Section 4.

2 Time Domain Methods

Finding the periodic steady-state solution of a cir-
cuit means finding the initial condition for the cir-
cuit’s associated system of differential equations such
that the solution at the end of the period matches
the initial condition. More precisely, the steady-state
solution must be a particular solution to the circuit
equations, as in

F0(0),1) = Fal(®) + i) +uB) =0, (1)

where u(t) € RV is the vector of input sources,
v(t) € RN is the vector of node voltages, and
i(v(t)), q(v(t)) € RY are the vectors of resistive node
currents and node charges (or fluxes), respectively. In
addition to satisfying (1), the periodic steady solution
must also satisfy the two-point constraint

o(T) - v(0) = 0. (2)

A sampling discretization is usually introduced to
numerically solve the combination of (1) and (2), by

437

IEEE 1996 CUSTOM INTEGRATED CIRCUITS CONFERENCE

which we mean that v(¢) is represented over the period
T by a sequence of M numerically computed discrete
points,

v(t1) 7:)(751)
v(f2) - U(fQ) 5,)
o(tar) ()

where tyr = T, the hat is used to denote numerical
approximation, and 9 € ®M¥ is introduced for nota-
tional convenience.

A variety of methods can be used to derive a system
of equations from which to compute . For example,
if the backward-Euler method is used to approximate
the derivative in (1), then © must satisfy

Fi(site) = 2= g(8)

+i(v(ty))+u(ty) =0
(4)
and for j € {2, ..., M}

Fy(o) = q(o(ty)) —h;z(ff(tj—l))

I

+i(v(t5)) +u(t;) =0,
(5)

where h; =t; —t;—1 and 0(to) is the unknown differ-
ential equation initial condition which generates the
periodic steady-state. Combining (2) with (5) yields
a system of nonlinear equations for ¥ and 0(¢o).

Two variants of Newton’s method are commonly
used to solve the combination of (2), (4) and (5):
the finite-difference-Newton and the shooting-Newton
methods [10, 11]. The finite-difference method is a di-
rect Newton method but the shooting-Newton method
uses an additional inner Newton iteration. The use of
an inner iteration implies that the shooting-Newton
method is a multi-level Newton method, and there-
fore has typically better global convergence properties
for stable problems. Despite this convergence property
difference, computing the Newton iterates in these two
methods leads to surprisingly similar systems of lin-
ear equations, and both these linear systems are eas-
ily solved using iterative methods like preconditioned
GMRES [7]. Below we will present the two methods,
and then describe how to apply the iterative matrix-
implicit solution techniques.

2.1 Finite-Difference-Newton Method

The finite-difference-Newton method is precisely
Newton’s method applied directly to (5), where (2)
is included by the identification 4(to) = O(¢ar). Before
giving the finite-difference-Newton iteration equation,

we establish some notation. Let L be the block lower
bidiagonal matrix given by

L= R ﬁ+G2)
-—C—h"jw—"- %ﬁ-f—GM -
and define B as
0 ... 0 -
B = b , ()
0 0

where C;,G; € RV*N denote dq(i(t;))/dv and
di(9(t;))/dv, respectively. For most practical circuits,
the connectivity is very sparse. This implies that for
typical problems, there are fewer than ten entries per
row in C; and G, regardless of the circuit size.

Using the above notation, the finite-difference-
Newton iteration equation is given by

(L + B) (f)k“ - 17") = —Fyq(d"), (8)

where k is the Newton iteration index and

—F1 (0%, 9" (tar))
=] O
~Fur(v)
2.2 Shooting-Newton Method

Another approach to solving (5) is to exploit the
fact that if 9(to) is given, then the nonlinear equation

q(9(t1)) — q(9(t0))
R

+i(b(t) +ult) =0 (10)

can be solved, presumably using Newton’s method, for
0(t1). Then, 9(¢1) can be used to solve

q(8(t2)) — q(0(t1))
ho

+i(0(t)) +u(t) =0 (11)

for ¥(t2). This procedure can be continued, effectively
integrating the differential equation one timestep at
a time in the standard fashion, using the initial con-
dition ¥(fo). And since the nonlinear equations are
solved at each timestep, ©¢(¢;) is an implicitly de-
fined function of ©(#p). This function, computed by

21.1.2

438

the numerical integration, is referred to as the state-
transition function of the discretized system and is
denoted as
d(0(t0), to, t5)- (12)
Note that if 3(¢;) is computed by solving the non-
linear equation F; in (4) or (5) at each timestep,
or equivalently if ©(t;) is computed by evaluating
é(9(to), to,t;), then (4) and (5) will always be sat-
isfied, regardless of the choice of 9(to). If 9(¢s) equals
©(tar), then (2) is also satisfied and a periodic steady-
state solution has been computed. This statement is
mathematically equivalent to the condition

Fon(9(t0)) = ¢(0(to), to, tar) — 0(to) = 0. (13)

The shooting-Newton method then computes 9(to)
for the periodic steady-state by applying Newton’s
method to solving (13), resulting in the iteration equa-
tion

[(0" (to), 0, T) = I}[0¥+" (t0) =" (t0)] = — Fen(9" (to)),

(14)
where k is the Newton iteration index, I is the identity
matrix, and

d
J¢(U’07T) = @(b(U,O,T) (15)

is referred to as the sensitivity matrix.

To complete the description of the shooting-Newton
method, and to see why we refer to it as a multilevel-
Newton method, it is necessary to present the proce-
dure for computing ¢(v,0,T) and J4(v,0,T). As men-
tioned above, computing the state transition function
is equivalent to solving the backward-Euler equations
in (4) and (5) one timestep at a time. Solving the
backward-Euler equations is usually accomplished us-
ing an inner Newton iteration, as in

Cirl

[T + Gm] (@D (t) - aM(t) =

j
1 ok ok co ok
— - (@ 2)) = a6 (1)) = i) - ults) (16)
i
where j is the timestep index, k is the shooting-
Newton iteration index, [is the inner Newton iter-

NN ek iy

ation index, Cji = d—q(—v—d—v(—t'ﬁ and Gjp = i’—(id#i-)l.
Sometimes, there are just too many indices.

To see how to compute Jy(v,0,T) as a by-product
of the Newton iteration in (16), let I = * denote the in-
ner Newton iteration which achieves sufficent conver-
gence, and let ** (¢;) denote the associated converged
solution. Using this notation,

g(8%*(¢;)) — q(9** (tj-1))
k.

J

+i(0% () + ul(t;) =0
(17)

to within the Newton iteration convergence tolerence.

Implicitly differentiating (17) with respect to 9*(to)

results in

[Cw "] o U (85) Clinyen di**(t51)

hj I dﬁk(to) hj d'lA)k(to)

(18)

By recursively applying the above equation, one can

derive that

Ts(8* (o), to, tar) = [] [y
j=1

kx
— + Gjkx
j

7 Oy
hy
(19)
where the notation H]Ail indicates a product rather
than a sum.

2.3 Direct Matrix Solution

In comparing the shooting-Newton iteration, (14),
to the finite-difference-Newton iteration, (8), there ap-
pears to be an advantage for the shooting-Newton
method. The shooting-Newton method is being used
to solve a system of N nonlinear equations, whereas
the finite-difference-Newton method is being used to
solve an NM system of nonlinear equations. This
advantage is not as significant as it seems, primarily
because computing the sensitivity matrix according
to (19) is more expensive than computing the finite-
difference Jacobian. In this section we will show that
using direct factorization to solve either (14) or (8)
leads to nearly equivalent computations.

To start, consider that L defined in (6) is block
lower bidiagonal, where the diagonal blocks have the
same structure as the single timestep Jacobian in (16).
It then follows that the cost of applying L~ is no more
than computing one Newton iteration at each of M
timesteps. One simply factors the diagonal blocks of
L and backsolves. Formally, the result can be written
as

(Inm+L7'B) (1‘;’”‘“——1")k> = —L7'F(3"), (20)

though L~! would never be explicitly computed. Here,
we have denoted the identity matrix in RVM*NM by
Inp.

Examining (20) reveals an important feature, that
LB € RNMxNM ha5 nonzero entries only in the last
N columns. Specifically,

Iy ... O Py
I
(INM+L_IB) = N

0 In+ Py
(21)

21.1.3

439

where P, € RV*¥ is the ((i —1)* N)+1 through i * N
rows of the last N columns of L~!B. This bordered-
block diagonal form implies that "' — %% in (20)
can be computed in three steps. The first step is to
compute Pps. This can be accomplished by forming
the N products Be;, where the ejs are the first NV
unit vectors in RV and then backsolving N times
with L. The second step is to use the computed Py to
determine the last N entries in #*T! —%*. This second
task can be performed by directly factoring I + Pay,
and using it to solve solving the last NV equations in
(20). The last step in solving (20) is to compute the
rest of ! — #* by backsolving again with L.

The close relation between solving (20) and (14)
can now be easily established. If L and B are
formed using Cji. and Gjg. as defined in (18), then
by explicitly computing L~!B it can be shown that
Js(9%(t0),to,tar) = Pum. The importance of this
observation is that solving the shooting-Newton up-
date equation is nearly computationally equivalent to
solving the finite-difference-Newton update equation.
Specifically, (14) can be solved by following the first
two steps of the above procedure, except the factoriza-
tion of Pps — Iy replaces the factorization of Iy + Phy.

The strong connection between the computational
steps in solving the shooting-Newton and finite-
difference-Newton update equations implies their com-
putational costs are very similar. For both methods,
the dominant costs are the more than order M N? op-
erations required to form Py and the N® operations
required to factor the dense Iy + Pys or Py — Iy ma-
trix. The reason forming Py is so expensive is that
it requires N backsolves with L, and each backsolve
with L requires at least order NM operations. We
say at least because the cost of backsolving with L de-
pends critically on the amount of fill-in produced by
factoring the N x N sparse diagonal blocks gi + Gj.
Since these blocks are generated by the hnea,rlzatlon
of a circuit, their structure is problem dependent. For
example, if the circuit happens to be a tree structure,
then % + G will have order N elements, the fac-
torization will produce no fill, and backsolving with
a factored L will require only order NM operations.
However, if the circuit is a three-dimensional mesh,
then factoring %— + G; will produce substantial ﬁll—
in, and backsolvmg with a factored L will cost order
N4/3M operations.

2.4 Matrix-Implicit Iterative Methods

As described above, applying direct factorization
to solving (14) or (20) results in an algorithm whose

21

440

computational complexity grows faster than order
MN? + N3. This rapid growth of computation time
with problem size severely limits the size of circuit
which can be analyzed, and in this section we exam-
ine how to reduce matrix solution cost using matrix-
implicit iterative methods. To begin, consider solving
the linear system in (8) using an iterative method like
the Krylov-subspace based GMRES algorithm [7]. A
simplified version of GMRES is given below.

GMRES algorithm for solving Az = b
Guess at a solution, z°.
Initialize the search direction p® = b — Az°.
Set £ =1.
do {

Compute the new search direction, p* =

Orthogonalize, p* = p* — Z;";& Br i1’

Choose a; in

B T
to minimize ||r*|| = ||b — Az

ApF-1,

ut

If Hr"“ < tolerancegmres, return v* as the solution.
else Set k =k + 1.

}

When the GMRES algorithm is applied to solving
(8), if the number of iterations required to achieve
convergence is bounded by a constant independent of
problem size, then the resulting solution algorithm is
much faster than direct factorization. The cost is re-
duced from order M N2+ N3 to order N M operations.
To see this, consider that forming (L+B)p* costs order
N M operations because of the circuit matrix sparsity,
and we have assumed a constant number of iterations.
Unfortunately, for typical circuit problems, (L + B)
in (8) is much too ill-conditioned for GMRES to con-
verge rapidly. Instead, the iterative method should be
preconditioned, or premultiplied, with L~!, and this
preconditioner insures rapid convergence [8].

Preconditioning using L™ corresponds to applying
the GMRES algorithm to solving (20) instead of (8).
It is crucial to observe that Iy + L™1 B is not explic-
itly required in the GMRES algorithm, it is only neces-
sary to be able to compute the matrix-vector products
(Ina + L71B)p*. This observation implies that each
preconditioned GMRES iteration can be performed
in nearly order NM operations by multiplying p* by
B, then backsolving with a factored L, and finally
adding p*. Therefore, the cost per iteration is some-
what more than order NM operations. Also, since
the L1 preconditioning has insured rapid convergence
independent of problem size, the entire solution al-
gorithm is nearly order NM operations. Finally, an

1.4

almost identical algorithm can be used to solve (14).
Consider that computing the matrix-vector product
(Js — In) p*, formed when GMRES is applied to solv-
ing (14), is equivalent to padding the N-length pf
with zeros to make it an N M-length vector, and then
computing (L~'B — Inar)p*. If such an approach is
used, Ppr — Iy is represented “quite” implicitly and
the so derived shooting-Newton-GMRES method has
the same nearly order NM operation cost as finite-
difference methods [9]. Be reminded, however, that
shooting-Newton methods still have superior global
convergence properties for stable problems.

2.5 Results

In this section we experimentally examine the per-
formance of three shooting-Newton schemes: direct
factorization or Gaussian elimination, forming GM-
RES, and matrix-implicit GMRES.

Table 1 compares the performance of the various
Newton-Raphson shooting method approaches imple-
mented experimentally into the Spectre circuit sim-
ulator. The test suite includes ztal, a crystal filter;
mizer is a small GaAs mixer; dbmizer is a double bal-
anced mixer; Imizer is a large bipolar mixer; cheby is
an active filter; and scf is a relatively large switched
capacitor filter. The second column in Table 1 lists the
number of equations in each circuit. The third column
represents the number of one-period transient analyses
that were necessary to achieve steady-state using the
shooting-Newton method. The fourth, fifth, and sixth
columns represent, respectively, the time in seconds
to achieve steady-state using Gaussian elimination,
explicit GMRES, and the matrix-implicit form. All
the results were obtained on a HP712/80 workstation.
The sixth column demonstrates the effectiveness of the
matrix-implicit approach, listing the speedup obtained
in respect to the Gaussian-elimination method. Note
that the speed-up over the explicit GMRES algorithm
would be similar for the size examples examined.

3 TFrequency-Domain Methods

Any square integrable T-periodic waveform, z(t),
can be represented as a Fourier series,

k=00

o(t)= Y X[k]e* It (22)
k=—o0
where fr = % and
1 T/2]
X[k == / z(t)e™ 2 futds, (23)
T J-r2

[circuit [eqns[it]| GE|GMRES| MI|GE/MI]
xtal 29137 0.50 0.50] 0.39 1.28
mixer 2414 1.85 1.74| 1.20 1.54
dbmixer | 100| 4| 4.15 4.07| 1.34 3.09
lmixer 126 | 3| 3.72 3.63| 1.03 3.61
cheby 237 4{23.39 21.97| 3.01 7.96
scf 377| 6| 2962 2054 | 281.41 10.52

Table 1: Comparison of different shooting method
schemes

If in addition to being periodic, z(t) is sufficiently
smooth, formally infinitely continuously differentiable,
then the X [k]’s vanish exponentially fast with increas-
ing k. This implies z(¢) can be accurately represented
with a truncated Fourier series, that is Z(t) =~ z(t)
where £(t) is given by the truncated Fourier series,

k=K
Bt)= Y X[k]e* /rt (24)
k=—K

where the number of harmonics, K, is typically fewer
than 15. Note that the time derivative of £(t) is given

k=K

X [k]j2nm fref? et (25)
k=-K
Representing a periodic waveform as a truncated
Fourier series can be used to approximately solve (1)
and (2), in which case the resulting methods are re-
ferred to as harmonic balance methods [3], or Fourier
spectral methods [13]. Of particularly wide use in cir-
cuit simulation are the spectral-collocation-on-charge
variants of these methods [3]. To derive the colloca-
tion method requires a little notation. If g(v) in (1) is
globally invertible, then we can denote §(t) = q(v(t))
and #(G(t)) = i(v(t)). Using this notation, (1) can be
rewritten as a differential equation in normal form in
terms of ¢,

L) + @) +u(®) =0. (26)
As an aside, standard integration methods are typi-
cally applied to the above form of (1) to insure charge
conservation.

Introducing the truncated Fourier series approxi-
mation for §(¢),

ity =3 Qe i, (27)
k=-K

21.1.5

441

into (26) results in

k=K
> QIklj2m fref?m it 4 (28)
k=—K

k=K
z(S Q[k]ejz"f”) +ut) = 0.

k=—K

Of course, it would be best if (28) holds for all ¢, but
there are only M = 2K + 1 degrees of freedom, the
Q[k]'s. Note, each Q[k] is an N—length vector, so we
are using “degrees of freedom” in a very loose sense. In
order to derive M systems of equations from which to
determine the Q[k]’s, (28) is enforced only at selected

collocation points t1,ts,...,tpr = T, as in

k=K

> Qlk]jen frel? it 4 (29)
k=—K
k=K R
z(> Q[k]eﬂ"f’“tj) +u(t;) = 0.
c=— K

Convergence analysis of spectral-collocation methods
can be found in {13, 14].

Note that (29) represents NM equations in NM
unknowns, but its form is not so readily identified with
the original functions g(v) and i(v). The relation is
easily unraveled, however. Let [~1 ¢ CNMxNM 4o
note the discrete Fourier transform matrix which rep-
resents the relationship between the Q[k]'s and t}(tj)’s,
as in

A Q[K]) {}:(tx)
! Q[(K:— 1) _ Q(fz . (30)
Q[-K] a(tm)

Using the definitions of § and 7, (29) can be simplified
as

Fiime(d) =T710lq(d) + i(d) + u = 0 (31)

where
a(d(t1)) i(0(tr))
a=| O) |
a(o(tar)) i(0(tar))
u(t1)
u= u(fz) , (33)
u(tar))

21

442

Weight
(=]

L o
o
f—o
o
o
o

1 5 9 13 17
Time Step Index

Figure 1: The harmonic balance discretization weights
for tg where T =17 and M = 17.

and () is the diagonal matrix given by

J2nfrin
J2rfr 1IN

j2nf-kIn
(34)
Using a change of variables, V = I'p, (31) can be
written in the form

Fireg(V) = QTg(D™'V) 4+ T4(T™' V) + Tu = 0. (35)

The form in (35) is often referred to as the harmonic
balance form because the unknowns are the Fourier
coefficients and the equations are in the frequency do-
main.

From the formulation in (31), it is clear that
I'7'QT is an approximate differentiation operator.
The weights for this spectral differentiation operator
for the case of T = 17, M = 17, and at timepoint
ty = 9 are plotted in Figure (1). Note that the weights
at tg and ¢19 are approximately —1 and 1 respectively,
so spectral differentiation is somewhat similar to a
central-difference scheme in which

d -~ I(tlo) - z(tg)
El‘(tg) ~ Htlo _ t8 (36)

The connection between spectral differentiation and
standard differencing schemes can be exploited when
developing preconditioners, a point we will return to
subsequently.

1.6

3.1 Applying Newton’s Method

Newton’s method applied to (31) or (35) yield the
iteration equations

(C71rC + G) (8! = 9*) = ~Fume(3) (37)

or
(@rer + TG (V7 = V') = —Fpee(9)

(38)

where k is the Newton iteration index, Fyime and Fyreq

are given in (31) and (35), and C,G € RNMXNM 5re

block diagonal matrices given by

C1 1
Cs
c= § . (39)
Cum |
G,]
Gs
G= , (40)
Gum |
where C; denotes dg(v(t;))/dv and G; denotes
di(v(t;))/dv.

The Jacobian in (37) has a structure that is sim-
ilar, but much denser, than the Jacobian associ-
ated with the backward-Euler based finite-difference-
Newton Method. This is clear from the explicit rep-
resentation of (I1QI'C + G),

G: «aiCi () oy a1Ch

a_1Cy Gy 10, s 020
.) . (41)

(11CM OQCM PRETTT) a_ch GM

where the o;’s are the weights for the spectral differ-
entiation. Note that the block diagonal terms depend
only on the G’s (incremental conductances). Also, for
linear time-invariant problems, where C; = C and
G; = G for all j, the matrix density is basically un-
changed. _

The explicit representation for QI'CI'~! + I'GT ™!
is, in general, similarly dense. However, one of the
advantages of the harmonic balance form of the equa-
tions is that if the problem is linear and time-invariant
the matrix is block diagonal and is given by

22Kc+ G

2iENo G

2rBo @
(42)

where C = Cj and G = Gj for all j. In this case, of
course, the matrix just represents phasor analysis at a
collection of isolated frequencies.

3.2 Iterative Matrix Solution

As mentioned in Section 2.4, if GMRES is applied
to solving a linear system of equations, then the ma-
trix representing the system is not needed explicitly. It
is only necessary to be able to compute matrix-vector
products. This implies that if GMRES is applied to
solving (37) or (38), then the iterations can be per-
formed in order NMlogM operations by employing
the fast Fourier transform [12]. This is easily shown,
consider computing

(r'arc + G) p* = r-'arcp* + Ge*. (43)

Forming Gp* and y = Cp* require only order NM
operations, due to the sparsity of C; and G;. Forming
w = I'y can be accomplished in NMlogM operations
using N fast Fourier Transforms. Multiplying w by €
is order N M operations because (2 is diagonal. And
finally, forming I'"'*Quw requires order NMlogM op-
erations using N inverse fast Fourier transforms. A
similar argument demonstrates that

(arcr—! +rGrt) p* (44)

can be computed in order M NlogM operations.

GMRES applied directly to solving (37) or (38) con-
verges too slowly to be practical. And, since the ma-
trices in (37) or (38) are related by an orthonormal
similarity transform, GMRES will converge identically
slowly in either case. However, when one considers
preconditioners, there is a reason for choosing between
the formulations. For the harmonic-balance form,
a block-diagonal, sometimes called a block Gauss-
Jacobi, preconditioner can be extremely effective when
the problem is nearly linear and time-invariant. This
is because the off-diagonal blocks of the matrix in
(38) are produced by frequency translations which are
minimal for the nearly linear and time-invariant case.
Variations on this idea include adding in some of the
off-diagonal blocks, using bands of blocks and incom-
plete factorization, or using the block lower triangular
matrix [2, 5, 3, 15].

For rapidly time-varying or nonlinear problems, fre-
quency coupling is more severe, and preconditioners
based on discarding off-diagonal blocks of the ma-
trix in (38) become ineffective. A different approach,
which involves preconditioning (37), uses matrices as-
sociated with finite-difference methods as precondi-
tioners, like the L matrix defined in (6) [14]. The key

21.1.7

443

concept is that both matrices have an approximate dif-
ferentiation operator, but, for example, the backward-
Euler or a central-difference discretization use much
sparser operators than spectral discretization. It is
worth noting that backward-difference methods have
a computational advantage over central-differencing
schemes in that they are more lower triangular. Fi-
nally, the L matrix given in (6) is not a very effec-
tive preconditioner because the backward-Euler oper-
ator is not sufficiently accurate to properly precondi-
tion the very high order spectral differentiation opera-
tor. Matrices associated with higher order differencing
schemes are much more effective.

4 Future Work and Acknowledge-
ments

Although in this tutorial paper we have focussed
on periodic steady-state analysis, most RF commu-
nication circuit problems require multitone analysis.
For example, mixers used for down conversion gener-
ate sum and difference frequencies that can be seper-
ated by several orders of magnitude. For this rea-
son, the newest work in this area is applying matrix-
implicit iterative techniques to accelerating multitone
problems using multitone harmonic balance [5], linear
time-varying noise analysis [8], and mixed frequency-
time techniques [3]. The authors would like to thank
Robert Melville, Peter Feldmann, Jaijeet Roychowd-
hury, Michael Steer, and David Sharrit for many valu-
able discussions over the years.

References

[1] A. Ushida, L. Chua, and T. Sugawara, “A Sub-
stitution Algorithm for solving nonlinear circuits
with multifrequency components. International

Journal on Circuit Theory and Applications, vol.
15, 1987.

[2] P. Heikkild. Object-Oriented Approach to Numeri-
cal Circuit Analysis. Ph. D. dissertation, Helsinki
University of Technology, January 1992.

3] K. Kundert, J. White and A. Sangiovanni-
Vincentelli. Steady-State Methods for Simulating
Analog And Microwave Circuits. Kluwer Academic
Publishers, Boston 1990.

[4] R. Gilmore and M. Steer, “Nonlinear circuit anal-
ysis using the method of harmonic balance - a re-
view of the art. Part I - Introductory Concepts.”
Int. J. on Microwave and Millimeter Wave Com-
puter Aided Engineering, Vol. 1, No. 1, 1991.

[5] R. Melville, P. Feldmann, and J. Roychowdhury.
“Efficient multi-tone distortion analysis of analog
integrated circuits.” Proceedings of the 1995 IEEE
Custom Integrated Circuits Conference, May 1995.

[6] M. Okumura, H. Tanimoto, T. Itakura, and T.
Sugawara. “Numerical Noise Analysis for Nonlin-
ear Circuits with a Periodic Large Signal Exci-
tation Including Cyclostationary Noise Sources.”
IEEE Transactions On Circuits and Systems - I
Fundamental Theory and Applications., vol. 40,
no. 9, pp. 581-590, September 1993.

[7] Y. Saad and M. H. Schultz. “GMRES: A gener-
alized minimal residual algorithm for solving non-
symmetric linear systems.” SIAM Journal on Sci-
entific and Statistical Computing, vol. 7, pp. 856—
869, July 1986.

[8] R. Telichevesky, K. Kundert, and J. White.
“Matrix-Implicit Iterative Techniques For RF Cir-
cuit Analysis,” in preparation.

[9] R. Telichevesky, Kenneth S. Kundert, Jacob K.
White. “Efficient Steady-State Analysis based
on Matrix-Free Krylov-Subspace Methods.” Proc.
Design Automation Conference, Santa Clara, Cal-
ifornia, June 1995.

[10] H. Keller. Numerical Solution of Two Point
Boundary- Value Problems, SIAM, 1976.

[11] Thomas J. Aprille and Timothy N. Trick.
“Steady-state analysis of nonlinear circuits with
periodic inputs.” Proceedings of the IEEE, vol. 60,
no. 1, pp. 108-114, January 1972.

[12] J. P. Boyd, Chebyshev and Fourier Spectral Meth-
ods, Springer-Verlag, New York, 1989.

[13] D. Gottlieb and S. Orszag, Numerical Analysis of
Spectral Methods: Theory and Applications, SIAM,
1977.

(14] C. Canuto, M. Y. Hussaini, A. Quarteroni and
T. A. Zang, Spectral Methods in Fluid Mechanics,
Springer-Verlag, New York, 1987.

(15] B. Troyanovsky, Z. Yu, L. So. and R. Dutton,
“Relaxation-Based Harmonic Balance Technique
for Semiconductor Device Simulation,” Proc. In-
ternational Conference on Computer-Aided De-
sign, Santa Clara, California, November 1995.

21.1.8

444

