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Abstract

A new approach to Fourier analysis within the context
of circuit simulation is presented that is considerably
more accurate and flexible than the traditional SPICE
approach. It is based on the direct computation of the
Fourier integral rather than on the discrete Fourier trans-
form and so it is not subject to aliasing. It can be used
to accurately compute a small number of Fourier coeffi-
cients for broad-spectrum signals such as those generated
by mixers, ΣΔ and pulse-width modulators, DACs, and
SC-filters. In addition, techniques that reduce errors and
provide the ability to resolve harmonics 120 dB – 140 dB
below the carrier are presented.

1 Introduction

It is widely accepted that with care the Fourier analy-
sis available in SPICE can resolve harmonics that are
60 dB – 80 dB below the carrier. A well known ap-
proach to providing a more accurate Fourier analysis is
to uniformly sample the waveforms while forcing SPICE
to compute the solution at each of the sample points and
using the Discrete Fourier Transform (DFT) to compute
the Fourier coefficients. This differs from the approach
used in SPICE2 where the uniform sampling of the wave-
form is performed by interpolating.

A new approach to Fourier analysis is presented that
computes the Fourier coefficients using the Fourier inte-
gral rather than the DFT. This approach has two impor-
tant benefits. First, it uses the unequally spaced time-
points naturally generated by the simulator. As a result,
fewer time-points are used, making the simulation less
expensive (assuming time required for computing the cir-
cuit response dominates over the the time required for
Fourier analysis). Second, this approach does not suffer
from aliasing. It accurately computes the Fourier coef-
ficients for a few harmonics, even thought there is sig-
nificant energy in the the harmonics that are not being
computed. This second advantage is an important one,
because it allows the Fourier analysis to be performed on
signals it would not normally be suited for, such as the
waveforms generated by ΣΔ and pulse-width modulators,

mixers, DACs and SC-filters.

The second advantage also results in the new method
being less sensitive to the error that results from the sig-
nal not being precisely periodic. This common situation
results when analyzing signals generated by a circuit that
has not completely settled. In this case, the signal at the
beginning and the end of the period do not match. Fourier
analysis assumes periodic signals, and treats a nonperi-
odic signal as a periodic signal with a discontinuous jump
at the end of the analysis interval. Because it is discon-
tinuous, the jump is an error with a very wide bandwidth.
Both the Fourier integral and the DFT are sensitive to the
portion of the error from the jump at the frequencies of
the coefficients being computed. However, the DFT is also
sensitive to the error at frequencies beyond the Nyquist
limit (half the sampling frequency) because of aliasing.
The wide bandwidth of the discontinuous jump results
in a large amount of additional error in the coefficients
computed by the DFT.

The computational complexity of the FFT is in the or-
der of N log2 N whereas the complexity of the Fourier
integral is in the order of KN where N is the number
samples used and K is the desired number of Fourier co-
efficients. The Fourier integral will be computationally
less expensive if K < log2 N . The Fourier integral only
requires storage for the K coefficients being computed,
not for all of the N sample points. Thus, it requires less
memory than the FFT if K < N .

2 Previous Approaches

SPICE2g6 computes the Fourier coefficients of a waveform
by linearly interpolating to a uniformly-spaced grid and
computing the DFT. The errors in this method spring
from the interpolation and aliasing in the DFT. The
.FOURIER command is intended to be used to compute
the distortion of low-distortion sinusoids. Thus, aliasing
is not typically an issue (though nonperiodic waveforms
due to incomplete settling are). The DFT is applied to
the interpolated signal, which differs from the true signal
by an amount that is related to the curvature of the signal
and the time between the interpolation point and the clos-
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est time-points computed by the simulator. The greater
the curvature and the farther the interpolation point is
from the time-points, the greater the error. In SPICE
there are several reasons why interpolation can lead to
unacceptable error:

1. In Fourier analysis, users are interested in resolving
very small signals. Thus, even small interpolation
errors are a problem.

2. SPICE’s Fourier analyzer does not bound the time-
step during the analysis period in order to assure rea-
sonable accuracy.

3. SPICE controls the time-step to assure that second-
order interpolation is accurate on capacitor charge
waveforms and inductor flux waveforms, not to assure
accurate Fourier analysis.

(a) The Fourier analysis is using first-order inter-
polation, which requires a smaller time-step to
achieve the same accuracy as the second-order
interpolation used by the simulator.

(b) Fourier analysis is performed on node voltages
and voltage source currents rather than on ca-
pacitor charges and inductor fluxes. Thus, the
simulator is not choosing the time-steps to con-
trol error in the signals being Fourier analyzed.

(c) If the circuit only contains very small capacitors,
CHGTOL effectively loosens the local-truncation
error criterion, allowing the simulator to take
large time-steps even though the Fourier ana-
lyzer requires smaller steps.

Other sources of error can also limit the resolution of
the Fourier analysis. For example, discontinuities in the
model equations due to incomplete models, errors, or by-
pass algorithms generate small jumps in the waveforms
being analyzed. In addition, the small errors that result
from incompletely converging Newton’s method also con-
tributes to reducing the resolution of the Fourier analysis.

The interpolation error is eliminated by forcing SPICE
to place a time-point everywhere a sample is needed for
the Fourier analysis. This dramatically improves the res-
olution of the Fourier analysis at the expense of requiring
the simulator to evaluate the circuit at additional time-
points. If the waveform being analyzed is a low-distortion
sinusoid, the additional computational burden is negligi-
ble because the DFT will not require many samples to
accurately compute the Fourier coefficients. However, if
the signal has a broad spectrum because it has very fast
transitions between two or more equilibrium points, then
the DFT’s need for small time-steps during the transi-
tions, and its requirement that the samples be equally

spaced, will require the simulator to take unnecessarily
small time-steps during the flat portions of the waveforms
between the transitions.

3 The Fourier Integral

For a periodic waveform x of period T , the Fourier coef-
ficients are computed with the following formulas,

a0 =
1
T

∫ t+T

t

x(τ)dτ (1)

ak =
2
T

∫ t+T

t

x(τ) cos
(

2πkτ

T

)
dτ (2)

bk =
2
T

∫ t+T

t

x(τ) sin
(

2πkτ

T

)
dτ (3)

where k = 1, 2, . . .. The derivation that follows uses (2)
to demonstrate the calculations. Similar steps should be
taken with (1) and (3) to compute a0 and bk.

The circuit simulator discretizes time and solves the
system of equations that describe the circuit at N + 1
time-point, t0, t1, · · · tN . Equation (2) is rewritten as a
sum of integrals over each time step,

ak =
2
T

N∑
n=1

∫ tn

tn−1

x(τ) cos(kωτ)dτ (4)

where ω = 2π
T and tN − t0 = T .

Between time-points, x can be approximated with a
low-order polynomial. This is very natural because the
circuit simulator makes a very similar approximation in
order to perform numerical integration. During time-step
n,

x(τ) ≈
M∑

m=0

cmnτm (5)

for tn−1 ≤ τ ≤ tn, where M is the order of the approxi-
mating polynomial. Substituting into (4) gives

ak ≈ 2
T

N∑
n=1

∫ tn

tn−1

M∑
m=0

cmnτm cos(kωτ)dτ. (6)

Exchange the order of integration and summation,

ak ≈ 2
T

N∑
n=1

M∑
m=0

cmn

∫ tn

tn−1

τm cos(kωτ)dτ. (7)

Finally,

ak ≈ 2
T

N∑
n=1

M∑
m=0

cmnαkmn (8)

2



where

αkmn =
∫ tn

tn−1

τm cos(kωτ)dτ. (9)

This integral is in a simple form that can be evaluated
analytically using integration by parts and induction.

αkmn =
m∑

i=0

m!τ i

i!(kω)m−i+1
sin(kωτ +

π

2
(m − i))

∣∣∣∣∣
tn

τ=tn−1

(10)
where 0! ≡ 1.

To review, the procedure for computing the Fourier co-
efficients is:

1. Break the integral into a sum of integrals, one for
each time-step as in (4).

2. Approximate the waveform with a low-order polyno-
mial over each time-step as in (5).

3. Analytically evaluate the integral over each time-step
for each order of τ individually using (10).

4. Sum the integrals for each order and each time-step,
as in (8).

4 Interpolation Error

Computing the Fourier series using the Fourier integral
not only avoids error due to aliasing, it is also less sen-
sitive to the error that results from interpolation. The
DFT is equivalent to applying the trapezoidal rule with
a uniformly spaced grid to the Fourier integral. Thus, to
compute a particular coefficient, the input signal is first
multiplied by sinusoid, the product is interpolated to the
uniform grid and then integrated. The new approach first
interpolates the signal alone to the grid. Once interpo-
lated, the remaining two steps are performed analytically.
Interpolating the signal alone introduces considerably less
error than does interpolating the product of the signal and
the sinusoid, particularly for the high frequency sinusoids
used to compute the upper harmonics. In addition, the
simulator is controlling the time-step so that interpolat-
ing the signal is accurate, not the product of the signal
and some sinusoid.

While use of the Fourier integral reduces the effect of
interpolation error, it does not completely eliminate it. It
remains very important to reduce the error due to inter-
polation in order to provide sufficient resolution.

5 Implementation in Spectre

Computation of Fourier coefficients using the Fourier in-
tegral was implemented in the Spectre circuit simulator.
Spectre is different from SPICE in a key way that helps
to improve the resolution of the Fourier analysis. Rather
than choosing the time-step to control the error in polyno-
mial approximation of the charge waveforms on capacitors
only (neglecting inductors), Spectre chooses the time-step
to control error in the polynomial approximations of the
voltage waveforms on capacitors. With the addition of
the Fourier analyzer, Spectre also chooses the time-step
to control error in the polynomial approximations of the
voltage waveforms at the input of the Fourier analyzer.
As a result, simply tightening RELTOL directly acts to im-
prove the accuracy of the Fourier analysis.

Several additional methods are applied simultaneously
in Spectre to reduce error from interpolation.

1. Higher order interpolation methods are used. Typ-
ically, second-order interpolation is used, though in
special circumstances first order interpolation is used
on at most a few time-points.

2. The Fourier analyzer forces Spectre to place a
time-point at both the beginning and the end of
the Fourier analysis period (using Spectre’s break-
points).

3. The Fourier analyzer limits the maximum size of the
time-step during the Fourier analysis (only) to be no
greater than one-tenth of the period of the largest
harmonic being computed.

Finally, Spectre does not use bypass algorithms.

6 Examples

Several examples are given to show the wide range of ap-
plicability of the Fourier-integral based analyzer. The
feedback amplifier example demonstrates that Spectre’s
Fourier analyzer is capable of resolving very small har-
monics. The ΣΔ modulator shows that immunity to
aliasing allows Spectre’s Fourier analyzer to be applied
to broad-band signals. The pulse-width modulator exam-
ple is one where Spectre’s Fourier analyzer naturally com-
putes an accurate result while the DFT would require tens
of millions of points to achieve similar accuracy. Finally,
the mixer example demonstrates that the small number
of harmonics computed by Spectre’s Fourier analyzer do
not need to be the low-order harmonics. In this exam-
ple, Spectre computes the value of 10 harmonics centered
around the 500th harmonic. It is also an example where
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harmonic SPICE2g6 Spectre Harm. Bal.
fund 875 mV 1 V 1 V
2nd -40.5 dB -98.6 dB -98.5 dB
3rd -43.2 dB -116 dB -120 dB
4th -24.3 dB -125 dB -169 dB
5th -33.3 dB -124 dB -143 dB
6th -33.3 dB -125 dB -196 dB
7th -24.3 dB -125 dB -165 dB

THD 9.55 % 0.0012 % 0.0012 %

Table 1: Results from μa741 using default tolerances and
time-steps.

using the DFT would require the simulator to compute 6
times as many time points.

6.1 Distortion of a Feedback Amplifier

Fourier analysis was applied to a low distortion feedback
amplifier. The amplifier is a μa741 op-amp in unity-gain
configuration. The input frequency is low at 1 kHz and
the input amplitude is small at 1 Vp, so the distortion
is very low. The distortion was computed from 9 har-
monics using the Fourier analysis in SPICE2g6 and in
Spectre on a 10ms transient analysis. Nothing was done
in either simulation to improve the results (default val-
ues were used for both RELTOL and the maximum time-
step). Harmonic balance was also run on the circuit as
a control (periodic harmonic balance has the property of
becoming extremely accurate as signals approach being
pure sinusoids [kundert90]). The results, given in Table 1,
show that because SPICE does not control the time-step
to accurately compute Fourier coefficients, its results are
often inaccurate. Spectre with RELTOL = 10−3 resolves
signals down to about −120 dB. This “noise” floor results
from errors in the waveform as computed by the simulator
rather than from errors in the Fourier calculations. This
is confirmed by running Spectre with RELTOL = 10−6, as
shown in Table 2. In this case, with Spectre the num-
ber and placement of the time-points during the Fourier
analysis interval did not change, and so the accuracy of
the Fourier analysis is unchanged. However, the tight-
ened convergence criteria results in the waveform being
computed more accurately and the “noise” floor dropping
to −160 dB.

6.2 Distortion of a ΣΔ Modulator

An important feature of the Fourier integral is that it is
not subject to aliasing, allowing it to be applied to broad-
spectrum signals. This is illustrated by computing the

harmonic SPICE2g6 Spectre Harm. Bal.
fund 997 mV 1 V 1 V
2nd -55.3 dB -98.5 dB -98.5 dB
3rd -58.1 dB -120 dB -120 dB
4th -53.3 dB -159 dB -169 dB
5th -55.9 dB -142 dB -143 dB
6th -55.9 dB -164 dB -196 dB
7th -53.3 dB -165 dB -165 dB

THD 0.48 % 0.0012 % 0.0012 %

Table 2: Results from μa741 with RELTOL = 10−6.
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Figure 1: Waveform generated by ΣΔ converter driven
with a 1V sine wave.

first 7 harmonics of the signal shown in Figure 1. This
signal was generated by driving a clocked first-order two-
level ΣΔ converter with a 1V sine wave. The signal has a
period of 1 s and the transitions last 1 μs.

The output of the ΣΔ converter is a long sequence of
integers. The distortion of the converter is determined
solely from the value and the order of the integers, not the
details of the waveform. This rather special characteristic
allows the use of the FFT, which is employed here to
verify the accuracy of the Fourier integral approach. To
compute the Fourier coefficients using the FFT one simply
samples the output once per clock cycle for 2K cycles.
The magnitude of the lowest harmonics computed from
the ΣΔ converter waveform by the Fourier integral and
FFT are shown in Table 3.

6.3 Distortion of a Pulse-Width Modula-
tor

It is difficult to measure the distortion of a pulse-width
modulator using the DFT because of its limited resolu-
tion in time. The DFT periodically samples the wave-
form, and any event that occurs between sample points
is missed. Consider the response of a pulse-width modu-
lator to a sinusoidal stimulus that is shown in Figure 2.
The sample points for a 64-point FFT are shown. The
spectrum computed by the FFT is clearly inaccurate be-
cause several pulses have been missed. The accuracy of
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harmonic Fourier Integral FFT
fund 1 V 1 V
2nd -63.3 dB -63.3 dB
3rd -54.3 dB -54.3 dB
4th -55.3 dB -55.3 dB
5th -51.6 dB -51.6 dB
6th -48.9 dB -48.9 dB
7th -47.7 dB -47.7 dB

THD 0.905 % 1.414 %

Table 3: The magnitude of the lowest harmonics com-
puted from the ΣΔ converter waveform by the Fourier
integral and FFT. The discrepancy in THD results from
the Fourier integral using far fewer harmonics (7 versus
512) when computing the THD.

Pulse-Width Modulated Sine

out
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V
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Figure 2: Response of a pulse-width modulator to a si-
nusoidal stimulus. The sample points used by a 64-point
FFT are shown. Notice that many of the pulses are missed
by the FFT.

the FFT is improved by increasing the number of points
used by the FFT, as shown in Figure 3. But even with
64k points, the accuracy is only marginal. In this exam-
ple, the modulator generates only 25 pulses per period of
the sine wave. If the pulse rate was higher, which would
not be unusual, then the performance of the FFT would
be even worse.

The Fourier integral method provided by Fourier anal-
ysis in Spectre accurately resolves the transition times
without missing any pulses. It is considerably more accu-
rate and more efficient than the FFT on this type of wave-
form. The Fourier coefficients computed by the Fourier in-
tegral and a 64K-point FFT for the waveform in Figure 2
are given in Table 4. The FFT is able to resolve harmon-
ics approximately 85 dB below the fundamental whereas
the Fourier integral resolves harmonics over 200 dB below
the fundamental.

FFT Results vs Points

dc
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dB
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Figure 3: The magnitude of the Fourier coefficients com-
puted by the FFT for the waveform in Figure 3 as a func-
tion of the number of points used. Even when 64k points
are used, the accuracy is marginal.

harmonic Fourier Integral 64K-Point FFT
fund 0.998 V 0.998 V
2nd -48.1 dB -48.0 dB
3rd -56.8 dB -56.8 dB
4th -93.8 dB -84.6 dB
5th -106 dB -88.0 dB
6th -138 dB -86.2 dB
7th -154 dB -86.2 dB
8th -183 dB -87.8 dB
9th -201 dB -84.7 dB

Table 4: The magnitude of the Fourier coefficients com-
puted by the Fourier integral and a 64K-point FFT for
the waveform in Figure 3. The Fourier integral was able
to accurately resolve the -200 dB 9th harmonic whereas
the FFT was unable to resolve harmonics below 85 dB.

6.4 Distortion Products of a Mixer

In the ΣΔ converter example, it was possible, and gener-
ally desirable, to use the FFT because the desired spec-
trum could be computed from a uniform sampling of the
output with one sample per clock period (it was possi-
ble and desirable to ignore the details of the waveform
over individual clock cycles.. However, uniform sampling
is impractical when trying to compute the distortion of
a mixer. Consider the example of a mixer from a hypo-
thetical satellite receiver for video signals. The RF in-
put frequency is 2.7GHz and the IF output frequency is
500MHz. To determine the distortion of the mixer, the
input is modulated at 1MHz. The modulation frequency
was chosen to satisfy the following constraints:

1. The significant intermodulation distortion products
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harmonic RELTOL = 10−3 RELTOL = 10−6

495th -56.5 dB -95.4 dB
496th -81.7 dB -93.1 dB
497th -60.0 dB -68.2 dB
498th -52.1 dB -53.3 dB
499th -6.06 dB -6.05 dB
500th 56.2 mV 56.3 mV
501th -6.05 dB -6.05 dB
502th -57.7 dB -53.3 dB
503th -63.9 dB -68.4 dB
504th -77.4 dB -98.1 dB
505th -56.8 dB -101 dB

Table 5: The magnitude of the harmonics needed to de-
termine intermodulation distortion of a mixer calculated
using the Fourier integral.

should be well within the 10MHz bandwidth of the
IF filter.

2. All waveforms must be periodic (a condition that
must be satisfied in order to apply the Fourier anal-
ysis).

3. The product of the simulation interval (the recip-
rocal of the modulation frequency, plus any needed
settling time) and the highest significant frequency
present (some harmonic of the RF input) should be
minimized in order to minimize the time required to
complete the simulation.

The IF frequency is the 500th harmonic of the modulation
frequency. Spectre is requested to compute the five har-
monics above and below the IF. The computation is still
efficient, because the Fourier coefficients are being com-
puted for only 11 harmonics. Of course, the simulation
is slow because small time steps are needed to accurately
follow the high frequencies and because of the need to
simulate for at least one period of the modulation fre-
quency. However, it is still faster than if the FFT were
used because the output waveform has sharp transitions
that would require a very small sampling interval. The
minimum step size needed during the simulation was six
times smaller than the average step size, implying that
to get comparable accuracy with the FFT will require six
times as many time point and so will be six times as slow.

7 Conclusion

A new approach of Fourier analysis was presented that ef-
ficiently computes a small number of Fourier coefficients.

The approach is based on the Fourier integral rather than
the discrete Fourier series, and so is not subject to alias-
ing. The new approach, along with a few techniques for
controlling the time step, is able to resolve very small har-
monics even in broad-band signals, making it suitable for
applications such as computing the distortion of ΣΔ and
pulse-width modulators, mixers, DACs and SC-filters.
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