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ABSTRACT

Being able to compute the steady-state response of a circuit is
of prime importance when working with analog and microwave cir-
cuits. It is possible to compute the steady-state response using
conventional transient analysis methods, however, doing so is very
inefficient when the circuit exhibits time constants that are long
compared to the time interval of interest. This paper presents two
methods that are capable of computing the steady-state response of
a circuit directly — harmonic balance, a frequency-domain method,
and the finite-difference method, which is based in the time
domain. Both of these methods are suitable for use on nonlinear
circuits that contain distributed devices and that exhibit either
periodic or quasiperiodic steady-state solutions.

1 INTRODUCTION

Often when simulating analog and microwave circuits, the
steady-state behavior of the circuit is of primary interest. For
example, the distortion, power level, noise, and transfer characteris-
tics such as gain and impedance of a circuit can only be deter-
mined from its steady-state response. Thus, it is desirable for a
circuit simulator used on analog and microwave circuits to be able
to compute efficiently and accurately the steady-state solution of
such circuits.

One approach to calculating the steady-state response is to
integrate the differential equations that describe the circuit from
some chosen initial state until any transient behavior dies out; an
approach that suffers from several fundamental drawbacks.

First, it can be quite difficult to determine when the transient
has died out. If the time constants involved in the transient are
large, the response must be observed over a long interval to be able
to conclude that the circuit is in steady-state. If not observed for a
period of time which is long enough, the circuit may be errone-
ously declared as being in steady state when in reality is quite far
from it. This can be a serious problem. For example, to determine
the linearity of an amplifier, the steady-state response of the circuit
to a sinuso‘dal input is computed and its deviation from a pure
sinusoid evaluated. Any transient that is present when the output
is computed is erroneously considered to be distortion.

Second, even if it is possible to detect correctly that steady
state has been achieved, it may take a long time for the transients
to decay, and thus, this approach would involve an expensive cal-
culation. It is sometimes possible to avoid this problem by using a
customized integration method to accelerate the process of reaching
steady state. For example, if the circuit exhibits lightly damped
oscillations, it is possible to have the integration method follow the
envelope of the solution rather than the solution itself [petzold81].

Finally, many analog and microwave circuits, such as mixers,
have inputs at two or more independent frequencies. These fre-
quencies are often such that the ratio of the highest to lowest fre-

quency generated by the nonlinearities in the circuit is large. In a
transient simulation, the size of the time step is proportional to the
highest frequency and the length of the simulation interval propor-
tional to the lowest. As a result, these circuits often require a vast
number of time points.

This paper presents a number of methods for directly comput-
ing the steady-state response of nonlinear circuits. However,
before introducing these methods, we will clarify what is meant by
steady state. In the most general terms, the steady-state solution of
a differential equation is the one that is asymptotically approached
as the effect of the initial condition dies out. An important aspect
of this definition is that the effect of the initial condition must
decay, but it is not necessary for it to disappear completely. For
example, a circuit such as a flip-flop with more than one stable
state has distinct initial conditions that eventually result in different
steady-state solutions. However, each steady-state solution is
reached regardless of small changes in the initial condition. This is
equivalent to saying that if the differential equation is at a steady-
state solution and is perturbed slightly and temporarily, it will
return to the same solution. Such a solution is referred to as being
asymptotically stable. Notice that this definition excludes lossless
linear LC oscillators.

There are several different kinds of steady-state behavior that
are of interest. The first is DC steady state. Here the solution is
an equilibrium point of the circuit and is independent of time.
Stable linear circuits driven by sinusoidal sources eventually exhibit
sinusoidal steady state solutions, which are characterized as being
purely sinusoidal except possibly for some DC offset. Periodic
steady state is the steady-state response of a nonlinear circuit
driven by a periodic source. A periodic steady-state solution con-
sists solely of a DC offset and harmonically related sinusoids. The
period of the solution is usually equal to that of the input, though
occasionally the periods of the two will be multiples of some com-
mon period. If a nonlinear circuit is driven with several periodic
sources at unrelated frequencies, the steady-state response is called
quasiperiodic. A quasiperiodic steady-state response consist of
sinusoids at the sum and difference frequencies of two or more

damental frequencies and their harmonics. The frequencies of

input signals usually equal that of the fundamentals, thought
sometimes they are even multiples. Other forms of steady-state
behavior exist, but are beyond the scope of this paper.

In this paper we discuss the computation of periodic and
quasiperiodic solutions of ordinary differential equations. We do
not guarantee that these solutions represent steady-state solutions
because the methods presented are unable to distinguish between
stable and unstable solutions.

The traditional approach to finding the periodic steady-state
response of a circuit is to wuse shooting methods
[aprille72, skelboe80]. These methods exploit the possibility of
finding an initial condition for the differential equations that
describe the circuit such that no transient is excited and the result-
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ing response is the steady-state solution. Shooting methods attempt
to find such initial conditions using an iterative algorithm. The
algorithm for a periodically driven circuit begins by guessing the
initial conditions and simulating the circuit for one period using
these conditions. The response is checked to see if it is periodic
and if not, how far is it from being periodic. A new initial guess
is then generated that presumably results in a response that is
closer to being periodic. The method used to generate the new ini-
tial conditions is what differentiates the shooting method variants
[kundert88a).

When trying to apply shooting methods to analog and
microwave circuits, two fundamental problems are encountered.
Shooting methods find the periodic steady-state response of a cir-
cuit by exploiting the fact that, under certain circumstances, it is
possible to formulate the periodicity constraint (that x(¢) = x(¢+T)
for all ¢) as a two-point boundary-value constraint (that
x(t)=x(@+T) for some fixed t) [keller76,stoer80]. Unfor-
tunately, in general, the steady-state response of a mixer, a very
important communication circuit, is not periodic, but rather quasi-
periodic. The quasiperiodic steady-state constraint cannot be for-
mulated as a boundary-value constraint. Shooting methods are
inappropriate for this type of circuit.

On each iteration, shooting methods compute a new initial
condition. For lumped circuits, under non degeneracy conditions
[desoer69], the initial conditions are a vector of voltages across the
capacitors and currents through the inductors. However, if the cir-
cuit contains distributed devices, its initial condition can no longer
be given using a finite set of numbers. To specify completely the
initial conditions for a distributed device requires that the voltage
and current be given everywhere along its length. Thus, the initial
conditions are specified not with a number, but with a function.
Functional initial conditions complicate hopelessly shooting
methods and so they are not practical for circuits containing distri-
buted devices. For these reasons, the shooting methods will not be
discussed further in this paper.

Harmonic balance [kundert88a)] is another method for com-
puting the steady-state response of a circuit that is popular for
microwave circuits. It differs from shooting methods in that it
assumes that the circuit’s steady-state response consists of a sum of
sinusoids, and proceeds to find the coefficients of the sinusoids that
satisfy the differential equation. Thus, the steady-state solution is
calculated directly and any transient is avoided. Harmonic balance
is efficient if only a few sinusoids are needed to approximate the
solution to the desired accuracy. It is attractive, therefore, when
the circuit is driven by sinusoidal sources and when the nonlineari-
ties are driven mildly.

A promising method for finding steady-state solutions that has
yet to find application in circuit simulation is the finite-difference
method. When finding periodic solutions, finite-difference methods
replace the differential equations with finite-difference equations on
a mesh of points that cover one period. Trial solutions consist of
discrete values, one for each point on the mesh, that do not neces-
sarily satisfy the difference equations but do satisfy the periodicity
constraint. The trial solution at each point is adjusted until it also
satisfies the difference equations. Finite-difference methods can
handle distributed devices and under certain circumstances can
compute quasiperiodic steady-state solutions.

This paper is organized as follows. In Section 2, background
material is presented and the problem to be solved is introduced.
Harmonic balance is covered in depth in Section 3. Section 4
discusses finite-difference methods and their relationship with har-
monic balance.

2 BACKGROUND

2.1 Definitions

A signal is a function that maps either R (the reals) or Z
(the integers) into R or C (the space of real pairs)f. The domain
and range of the map are physical quantities; the domain is typi-
cally time or frequency, and the range is typically voltage, current
or charge. A signal whose domain is time is called a waveform;
one whose domain is frequency is called a spectrum. All
waveforms are assumed R-valued whereas all spectra are assumed
C-valued.

A waveform x is periodic with period T if x(¢) = x(t+T) for
all t. P(T) denotes the set of all periodic functions with period T
that can be uniformly approximated by the sum of at most a count-
able number of T-periodic sinusoids. Thus, P(T) consists of
waveforms of the form

x(t)= 3 (XEcoswyt + X sinw,1), (0]
k=0

where ®, = 21k /T, XE, X,,se R, and

T IXE? + (XD < . @
k=0

A waveform is almost periodic if it can be uniformly approx-
imated by the sum of at most a countable number of sinusoids
[hale80]. We use AP (A) to denote the set of all almost periodic
waveforms over the set of frequencies A. Thus, AP (A) consists of
waveforms of the form

x() = Y (XFcoswyt + XSsinwr), 3)
W, €A
where A = (©g, ®y, 0, -+ } and (2) is satisfied. If A is finite
with K elements, it is denoted Ag. If there is a set of d frequen-
cies {Ay A, - - , Ay} and A is such that

A={@l o=kA +k A+ -+ +kyhgs ky, ko -+ kg ZA)

then the frequencies {A; A, - , A4} are referred to as the fun-
damental frequencies and form a basis (called the fundamental
basis) for A. The sequence of fundamental frequencies (A}
s‘kilould be linearly independent over the rationals (that is

Y kjA; =0 implies ky=k;= - - - =k; =0) so that each we A
j=1

corresponds uniquely to a sequence of harmonic indices {k;}. If A
is constructed from such a basis, then AP(A) is also denoted

AP(A, Ay, - -, Ag). Waveforms belonging to this set are
referred to as quasiperiodic. Note that P(T)=AP(A)) if
A =20T, and P(T) € AP(Ay Ag, - -+, Ap) if for some j,
Aj =2mT.

The pair X, = [Xf X$]Te C is the Fourier coefficient of the
Fourier exponent @, and X = [Xo, X1, Xo, -+ |7 is called the
frequency-domain representation, or spectrum, of x. Conversely, x
is the time-domain representation, or waveform, of X. If all the
frequencies ©, € A are distinct, (i.e., @; # ®; for all i # j) then
there exists a linear invertible operator FF, referred to as the
Fourier transform, that maps x to X. This is a more general
definition of the Fourier transform than is used elsewhere in that
we define the transform for almost-periodic signals as well as
periodic signals.

+ Throughout this paper, the trigonometric Fourier series is used rather than the
exponential to avoid probl with pl t and Iytic functi
when deriving the h ic Newton algorithm. Thus, a signal at one frequency in a
specirum is described using the coefficients of sine and cosine. The pair of these are
said to reside in C = R? rather than €.
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A collection of devices is called a system if the devices are
arranged to operate on input signals (the stimulus) to produce
output signals (the response). A system is autonomous if both it
and its stimulus are time invariant, otherwise it is forced. An
oscillator is an example of an autonomous system while an
amplifier, a filter, and a mixer are all examples of forced systems.
Lastly, an algebraic or memoryless device or system is one whose
response is only a function of the present value of its stimulus, not
past or future values.

2.2 Problem Formulation

In the interest of keeping notation simple, we consider only
nonlinear time-invariant circuits consisting of independent current
sources and voltage controlled resistors, capacitors and distributed
devices. These restrictions are mostly cosmetic; they allow the use
of simple nodal analysis to formulate the circuit equations. If a
more general equation formulation method such as modified nodal
analysis is used [sangiovanni81], all results presented in this paper
can be applied to circuits containing inductors, voltage sources, and
current-controlled components. We further assume that the distri-
buted devices are linear, that the circuit is nonautonomous (or
forced), and that it has a steady-state solution.

Let N be the number of nodes in the circuit, and assume it
has an isolated asymptotically stable almost-periodic solution
v € APY(A); that is, v is a vector of node voltage waveforms, each
of which is almost periodic on the set of frequencies A. Further
assume that the source current waveforms belong to APN (A), and
that all device constitutive equations are differentiable when written
as functions of voltage. Now, using Kirchoff’s current law, the
circuit can be described by

FO.D=i0E)+qE @)+ _[)‘(!—’E)V(‘t)d‘c +u@®)=0 (5

where f is the function that maps the node voltage waveforms into
the sum of the currents entering each node; ¢ € R is time; 0 e rY
is the zero vector; u € APY(A) is the vector of source current
waveforms; i,q:IRY >R are differentiable functions represent-
ing, respectively, the sum of the current entering the nodes from
the nonlinear conductors, and the sum of the charge entering the
nodes from the nonlinear capacitors; and y is the matrix-valued
impulse response of the circuit with the nonlinear devices
removedi.

2.3 Discretization

Closed form solutions to general nonlinear differential equa-
tions are not known. Thus, numerical techniques have to be used
to solve equations of the form described by (5). Numerical tech-
niques discretize (i.c. approximate) the differential equations to
yield a finite system of algebraic equations.

A discretization method approximates the solution using a
finite lincar combination of prespecified basis functions. This
accomplishes two goals. First, it allows the solution to be approxi-
mated using a finite collection of numbers, such as the coefficients
of the linear combination. Second, since the basis functions are
known and are being combined linearly, it is possible to precom-
pute algebraic formulas for dynamic operations such as time
differentiation, integration, delay and convolution, thereby convert-
ing the differential equation into a system of algebraic equations.

% To remove a nonlinear device, simply replace its constitutive equation y = f{x)
withy = 0.

One example of discretization methods are the backward
difference methods [gear71]. These methods break the interval for
which the solution is desired into a finite number of subintervals
using a mesh, The solution is approximated on each subinterval by
a low order polynomial. The choice of polynomials is constrained
to assure that the resulting function and perhaps its first few deriva-
tives are continuous at the mesh points. In this example, the basis
functions are nonzero for only a short interval, and so affect the
solution only locally. An example for which the basis functions
are used globally is harmonic balance, which uses sinusoids as the
basis functions. Local methods can rapidly and accurately respond
to abrupt changes in the solution whereas global methods can accu-
rately represent smooth solutions over long time intervals with few
basis functions.

Once the basis functions are specified, it is still necessary to
chose how the solution is to be represented. The conventional
approach is to use sampling, which specifies the approximate solu-
tion by giving its value and perhaps the value of its derivatives at
the mesh points. The basis functions are used when computing the
discrete approximation to the time derivative and when interpolat-
ing 1o find the solution between the given time points. Methods
that use a sampled-data representation for the solution are con-
sidered finite-difference methods. Another approach is to recognize
that the solutions are being approximated by a linear combination
of basis functions and use the coefficients of the basis functions to
represent the solution. Methods that represent the solution using
these coefficients are called expansion methods [kundert88a], of
which harmonic balance is an example. The issue of whether to
use samples or coefficients to represent the solution is primarily a
question of efficiency. Once the basis functions and the formula
for computing the time derivative are chosen, the essential charac-
teristics of the discretization method are fixed.

3 HARMONIC BALANCE

Harmonic balance differs from traditional transient analysis in
two fundamental ways. These differences allow harmonic balance
to compute periodic and quasiperiodic solutions directly and give
the method significant advantages in terms of accuracy and
efficiency. Transient analysis, which uses standard numeric
integration, constructs a solution as a collection of time samples
with an implied interpolating function. Typically the interpolating
function is a low order polynomial. However, polynomials fit
sinusoids poorly, and so many points are needed to approximate
the sinusoidal solutions accurately.

The first difference between harmonic balance and transient
analysis is that harmonic balance uses a linear combination of
sinusoids to build the solution. Thus, it naturally approximates the
periodic and almost-periodic signals found in a steady-state
response. If the steady-state response consists of just a few dom-
inant sinusoids, which is common, then harmonic balance needs
only a small data set to represent the response accurately. The
advantage of using sinusoids to approximate an almost-periodic
steady-state response becomes particularly important when the
response contains dominant sinusoids at widely separated frequen-
cies.

Harmonic balance also differs from traditional time-domain
methods in that time domain simulators represent waveforms as a
collection of samples whereas harmonic balance represents them
using the coefficients of the sinusoids. (Just as in traditional time-
domain methods where it is presumed that a polynomial is used to
interpolate between samples, we can use samples to represent the
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combination of sinusoids, with the understanding that a sum-of-
sinusoids interpolation is to be done between samples.) Working
with the coefficients and exploiting superposition makes it possible
to calculate symbolically the response from linear dynamic opera-
tions such as time integration, differentiation, convolution, and
delay. Because linear devices respond at the same frequency as the
stimulus, it is only necessary to determine the magnitude and phase
of the response. Using phasor analysis [desoer69), this is easily
done for lumped components such as resistors, capacitors and
inductors; while it is not trivial for the more esoteric distributed
devices, it is generally much easier to find their response using
phasor analysis than to try to determine their response to sampled
waveforms in the time domain.

Determining the response of the nonlinear devices is more
difficult. There is no known way to compute the coefficients of
the response directly from the coefficients of the stimulus for an
arbitrary nonlinearity, though it is possible if the nonlinearity is
described by a polynomial or a power series [steer83]. We do not
wish to restrict ourselves to these special cases, nor to accept the
error of using them to approximate arbitrary nonlinearities.
Instead, we convert the coefficient representation of the stimulus
into 2 sampled data representation; this is a conversion from the
frequency domain to the time domain and is accomplished with the
inverse Fourier transform. With this representation the nonlinear
devices are easily evaluated. The results are converted back into
coefficient form using the forward Fourier transform.

Because the coefficients of the steady-state response are an
algebraic function of the coefficients of the stimulus, the dynamic
aspect of the problem is eliminated. Thus, the nonlinear integro-
differential equations that describe a circuit are converted by har-
monic balance into a system of algebraic nonlinear equations
whose solution is the steady-state response of the circuit. These
equations are solved iteratively using Newton’s method.

3.1 Derivation

When applying harmonic balance to (5), both v and f (v) are
transformed into the frequency domain. Since v is almost periodic,
both i(v) and ¢(v) are almost periodic; therefore all three
waveforms can be written in terms of their Fourier coefficients:
Fv=V, Fi(v):Fi(F'lV)=I(V) and
Fq(v) = Fq(F V)= Q(V). Since v, i(v) and ¢(v) are vectors
of waveforms — one waveform for each node in the circuit — V,
I(V) and Q (V) are vectors of spectra. The Fourier coefficients of
the convolution integral are computed by exploiting its linearity.
Assume y satisfies

[y©y®dt <

and y(t) = O for all r < 0; that is, assume y is causal and has finite
energy (or equivalently, that the circuit with all nonlinear devices
removed is causal and asymptotically stable); then

t
ij(:-r)v(c)dr:yv

where
Y=0Y,,] mmne{l,2,---,N}
Yoo = Yk, )]  k,(eZ

where m,n are the node indices; k,l are the frequency indices,
and

Re{Yps G0¢)} —Im (Y, Goop))

I (Y, jk))  Re(Y,, G00p))
Y (k1) = |

ifk =1
ifk #1
where Y is the Laplace transform of y [desoer69)] and j = V—1.
Now (5) can be rewritten in in the frequency domain as
FV)=I1(V)+QQV)+YV+U =0 ©)

where U =JFu contains the Fourier coefficients for the source
currents over all nodes and harmonics, and

Q=[Q,,] mmne(l,2,--- ,N}

Q. k. D] ifm=n
0 ifm#n

0 -0y
o O ifk =1

Qpk,)=|q kel

Q=

mn

That Fg(v) = QQ (V) follows from the differentiation rule of the
Fourier series. Eqn. (6) is simply the restatement of Kirchoff’s
current law in the frequency domain.

It is important to realize that the frequency-domain functions
for the nonlinear devices (/ and Q) are evaluated by transforming
the node voltage spectrum V into the time domain, calculating the
response waveforms i and ¢, and then transforming these
waveforms back into the frequency domain. To assure that the
nonlinear device response waveforms are almost periodic, we
require that the nonlinear devices be algebraic. If not (that is, if
the device has memory), then the response waveform has a tran-
sient component, is not almost periodic, and cannot be accurately
transformed into the frequency domain. The restriction that non-
linear devices be algebraic clearly allows nonlinear resistors. For-
tunately, it also allows nonlinear capacitors and inductors (actually,
any lumped nonlinear component) because their constitutive rela-
tions are algebraic when written in terms of the proper variables; v
and ¢ for capacitors, and { and ¢ for inductors [chua80]. The
conversion between i and ¢ (( =¢) and v and ¢ (v = ¢) is done
in the frequency domain where it is an algebraic operation and
does not disturb the steady-state nature of the solution. Nonlinear
distributed devices, however, are not algebraic, and the trick of
evaluating their response in the time domain and transforming it
into the frequency domain cannot be used. Instead, it is necessary
to remain in the frequency domain and model the nonlinear device
using a Volterra series representation. We will not consider non-
linear distributed devices further.

3.2 The Almost-Periodic Fourier Transform

To make the process of finding the solution to (6) computa-
tionally tractable, it is necessary to truncate the frequencies to a
finite set. By considering only a finite number of frequencies, it is
possible to sample a waveform at a finite number of time points
and calculate its Fourier coefficients. Since the spaces involved are
now finite dimensional, the first representation theorem of linear
algebra shows that the Fourier transform T and its inverse IF~! can
be viewed as matrices acting on the vectors of samples and
cocfficients, respectively. That is,

T (XEcoswet + Xfsinwgt) = x(2)
W € Ay

can be sampled at S time points, resulting in the set of S equations
and 2K ~ 1 unknowns
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Xo |
1 cosagt; sinmty .. COSMyg_12) sin@g_;ty Xf x(t,)
1 cosmyty sin®ty .. COSWg_1f2 SiNWx_375 x3 x ()
1
1 cosmt; sin®t3 .. COSWx_1¢3 SinMg_173 : = |x(t3)
AR L T
1 . - : XK-l )
COsSMyis SINWjfs ... COSOg_jfs SinOg_its s x(ts)
X+ |
Q]

If the frequencies ®; are distinct, and if § = 2K —1, this system is
invertible for almost all choices of time points, and can be com-
pactly written as I™!X = x. Inverting I"! gives Tx =X. T and
™! are a discrete Fourier transform pair.

Given a finite set Ag of distinct frequencies ®;, and a set of
time points, we say that T' and T~! are one implementation of the
almost-periodic Fourier transform for AP(Ag). Once I' and I
are known, performing either the forward (using I) or inverse
(using T™!) transform just requires a matrix multiply, or (2K —1)
operations; this is the same number of operations required by the
discrete Fourier transform (DFT).

The DFT is a special case of (7) with @, =k® and
t, = sT/S, i.e. when the frequencies are all multiples of a single
fundamental and the time points are chosen equally spaced within
the period. The DFT and its inverse, the IDFT, have the desirable
property of being well conditioned, which is to say that very little
error is generated when transforming between x and X. From the
matrix viewpoint, the high accuracy of the DFT corresponds to the
fact that the rows of ™' are orthogonal. Unfortunately, the DFT
and the IDFT are defined only for periodic signals.

For almost-periodic signals, if the time points are not chosen
carefully, ™! can be very ill-conditioned. A particularly bad stra-
tegy for choosing time points when signals are not periodic seems
to be that of making them equally spaced. Unlike the periodic
case, it is in general impossible to choose a set of time points over
which the sampled sinusoids at frequencies in Ax are orthogonal.
In fact, it is common for evenly sampled sinusoids at two or more
frequencies to be nearly linearly dependent, which causes the
severe ill-conditioning problems encountered in practice. Develop-
ing an way to choose a set of time points that result in well condi-
tioned transform matrices is beyond the scope of this paper, but an
effective and practical algorithm is given in [kundert88c].

3.3 Harmonic Newton
As shown earlier, the circuit equation

r
FOD=iGE) +qoE)+ [ye-mv@E)d +u@)=0 @)

can be written in the frequency domain as
FWV)=I(V)+QQV)+YV +U =0. ©)

To evaluate the nonlinear devices in (9) it is necessary to
convert the node voltage spectrum V into the waveform v and
evaluate the nonlinear devices in the time domain. The response is
then converted back into the frequency domain. Now that we have
developed the almost-periodic Fourier transform, it can be used
with (9) to allow harmonic balance to be applied to almost-periodic
systems. Assume that the number of frequencies has been trun-
cated to K; v,u eAPN(AK); and that a set of time points
{te t1» - »tox_1} has been chosen so that T is nonsingular.
Then V, =Tv,, 1,(V) =Ti,(v) and @, (V) =Tgq, ).

Applying Newton-Raphson to solve (9) results in the iteration

JEOYID - v = —F (V) (10
where
_OF _AW) L 300 .y
W=y =" *8 v T
Or
OF , (V
V)= [Jmn(V)] = [_BMV(—)] mne (1,2, - N}
where
F (V) _ dlu(V) W)
v, v, + =5y — + Y-

The derivation of dl,,/dV, follows with help from the chain rule.
1, (V) = Ti,, (v)
Mp(V) _ Bim(v) vy
v, = v, aV,
Since i(v) is algebraic, 9i,/dv, is a diagonal matrix. Using the
fact that TV, =v,,
An(V) _ im(®)
oV, av,
The derivation of 8Q,,/dV,, is identical. Now everything needed to

evaluate (10) is available. If the sequence generated by (10) con-
verges, its limit point is the desired solution to (9).

3.4 Acceleration of Harmonic Newton

Of the time spent performing harmonic Newton, most is spent
constructing and factoring the Jacobian J(V). There are two things
that can be done to reduce this time. First is to employ
Samanskii’s method [ortega70}; simply reuse the factored Jacobian
from the previous iteration. This eliminates the construction and
LU decomposition of the Jacobian, and so only the forward and
backward substitution steps are needed. If the circuit is behaving
nearly linear, then a Jacobian may be used many times. If, how-
ever, the Jacobian is varying appreciably at each step, then
Samanskii’s method might take a bad step and slow or preclude
convergence. To decide how many times to use an old Jacobian,
{IF (V)| should be monitored, and a new Jacobian computed if the
norm is not sufficiently reduced at each step.

The second way to improve the harmonic Newton algorithm
is to exploit the sparsity of the Jacobian. The Jacobian is organ-
ized as a block node admittance matrix that is sparse. Conven-
tional sparse matrix techniques can be used to exploit its sparsity
[kundert86a]. Each block is a conversion matrix that is itself a
block matrix, consisting of 2 X 2 blocks that result from Fourier
c?efﬁcients being members of C. Conversion matrices are full if
they are associated with a node that has a nonlinear device
attached, otherwise they are diagonal. In an integrated circuit, non-
linear devices attach to most nodes, so the conversion matrices will
in general be full. It often happens, though, that nonlinear devices
are either not active or are behaving very linearly. For example,
the base-collector junction of a bipolar transistor that is in the
forward-active region is reverse biased, and so the junction contri-
butes nothing to its conversion matrices. If there are no other con-
tributions to those conversion matrices, they may be ignored. If
there are only contributions from linear components, they are diag-
onal. During the decomposition, it is desirable to keep track of
which conversion matrices are full, which are diagonal, and which
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are zero, and avoid unnecessary operations on known zero conver-
sion matrix elements.

Experimentally, the computational complexity of the LU
decomposition of the block Jacobian matrix is O (N°K?3), where
typically 1.1 <o <15 The amount of memory required is
OWN°K 2). Clearly, the cost of harmonic Newton increases very
rapidly as K grows. There are other algorithms, such as harmonic
relaxation [kundert86b], that do not suffer from such a dramatic
increase in resource needs, but these methods will have conver-
gence problems with circuits that behave strongly nonlinear.

4 FINITE-DIFFERENCE METHODS

4.1 Derivation

Like most approaches to solving differential equations numer-
ically, the finite-difference methods approximate the original sys-
tem with a set of difference equations. Unlike transient analysis
methods, however, finite-difference methods attempt to find the
solution at every time point simultaneously. To find a T -periodic
solution using a finite-difference method, a mesh
lg<t; << -+ <5 is chosen where to=0 and ¢, =T7. A
finite sequence {v,} is computed as an approximation to v(¢) on
the mesh, where v,=v(z,). The difference equations are formed by
using a discrete time approximation to the time derivative and the
convolution integral. For example, consider the slightly modified
version of (5)

t
fED=i)+q0)+ [ye—ov@dt+u@) =0, (1)

All symbols have their previous definitions except that i is a func-
tion representing the sum of the current entering the nodes from all
conductors, ¢ represents the sum of the charge entering the nodes
from all capacitors; and y is the matrix-valued impulse response of
the circuits with all lumped elements removed.

There are a large number of possible discrete approximations
to ¢ that can be used [gear71]. Implicit Fuler [white86], the sim-
plest approximation that is suitable for circuit simulation, employs
linear interpolation between mesh points and is given by

. 1
g = h—(qs = qs-p) (12)

where hy =1, —t,_; is the time step. A discrete approximation to
the convolution integral would be given by
s
W = 3 VerVs 13
r=0

where w, represents the current entering the nodes from distributed
devices at time ¢, and y, is the discrete approximation to the
impulse response y. Computation of y,, is done by applying first
an interpolation function to the solution between the mesh points
and then employing an integration method such as Simpson’s rule
[stoerB0). The details are beyond the scope of this paper — more
information can be found in [hall76].

Discretizing (11) using the approximations of (12) and (13)
yields

S
H00) + @0 = 40D+ Ty, +u =0 (19)
s r=0

where s =1, - - - ,S. As v is T-periodic, vy = vg, which results

in the following system of nonlinear algebraic equations

- S
q(VI)h 90s) + Zylrvr +u;=0
1 r<0

— N
g - qvp) * Synv, +up=0
hZ r=0

i(vl) +

i(vp) +

- s
i(vs) + a0s) hq("s—l) + Xys v, +us =0.
S r=0

The system is solved using the Newton-Raphson method.

Finite-difference methods can generate large systems of equa-
tions, especially if either the number of unknown waveforms or the
number of time points is large. The systems are sparse, and hence,
not overly expensive to solve. The sparsity is increased further if
there are no distributed devices present in the circuit.

It is possible to reduce the time required for the finite-
difference methods by choosing carefully the time steps to achieve
a desired accuracy, clustering them in troublesome spots to reduce
error where the basis functions accurately approximate the solution
only over short intervals while spreading them out in quiescent
areas to reduce computer resource usage. If the solution is
expected to be smooth, it is possible to use high-order integration
methods to achieve low truncation error using widely separated
time points. Lastly, it is possible to use Samanskii’s method
[ortega70] to reduce execution time further.

4.2 Time-Domain Harmonic Balance

Finite-difference methods are elegant and simple. They also
offer great flexibility in the choice of the basis functions. For
example, by starting from (9), harmonic balance is written as a
finite-difference method by simply multiplying through by the
inverse almost-periodic Fourier transform matrix I For node n,

N
L)+ 1'9Q,0,V)+ T ¥ Y,,V, + U, =0.
m=1
Knowing that V, =Tv,, I,(V)=Ti, (), Q,(V)=Tg,(v) and
U, =Tu, allows us to simplify this to

N
LW +T7Q,Tg,M+ T YV, Tv, +u, =0  (15)
m=1
r'e,,T and I"'Y,,T are constants and so can be precomputed
for efficiency. Eqn. (15) shows that harmonic balance can be for-
mulated in the time domain as a finite-difference method. The
basic difference between the two approaches is that the frequency-
domain version represents the solution using the coefficients of the
sinusoids and the finite-difference method represents them in
sampled-data form. Though both methods give the same answer,
the matrices in the finite-difference method are denser and so that
approach will be less efficient.

In changing the basis functions from piecewise linear to
sinusoidal, the character of the finite-difference method was com-
pletely changed. The rather conventional implicit Euler was
replaced with a discrete differentiation operator (I"'Q,, T that is
exact for sinusoids and suitable for almost-periodic signals. How-
ever, using sinusoidal basis functions also results in the computed
solutions being noncausal. This fact is nommally hidden when the
solution is smooth, but becomes apparent if the solution exhibits
sharp transitions where is manifests itself as preshoot. This
*‘feature’’ can be disconcerting to the uninitiated.

6.1.6



5 CONCLUSION

In this paper, we presented two methods for finding the
steady-state response of a circuit, harmonic balance and the finite-
difference method. We showed that the unique characteristics of
harmonic balance result from the use of sinusoidal basis functions.
These basis functions were installed into a finite-difference method,
demonstrating that it is not the frequency domain that makes har-
monic balance unique, but rather that it constructs a solution as a
sum of sinusoids. It also shows the flexibility of the finite-
difference methods. It is also possible to formulate a harmonic-
balance-like method (an expansion method) based on implicit Euler
(where the piecewise linear functions are specified in terms of the
coefficients of the line segments rather than their end points),
which establishes that finite-difference methods and harmonic bal-
ance are equivalent.

The determination of the steady-state response of a circuit is
still an open research area, with many promising avenues to be
explored. For example, more work is needed on finding the
steady-state response of autonomous circuits such as oscillators.
Also, an efficient way to determine whether a computed solution is
stable is needed for all the methods presented.

There is still room for considerable innovation also in
developing new discretization methods. It is possible to customize
a discretization method to particular problem by designing suitable
basis functions. The first simulator to use ‘‘designer’’ basis func-
tions is Harmonica [kundert}, which uses sinusoidal basis functions
with the harmonic Newton algorithm. Developing unique basis
functions for other individual problems, such as the recursive basis
methods [kundert88b], is only now just beginning.
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