how big can you dream?™

Future Directions in Mixed-Signal Behavioral Modeling

Ken Kundert October 2002

1 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

cādence

Mixed-signal behavioral modeling is starting to take off

- Standard languages are here
 - Verilog-A, Verilog-AMS, VHDL-AMS
- Simulators are ready or soon will be ...
 - Spectre and AMS Designer from Cadence
 - Advance-MS from Mentor
 - More than ten others
- Mixed-signal IP is becoming available with behavioral models
 - Barcelona, Neolinear, AMI Semi, Tality, etc.
- Slowly building up a supply of trained modeling engineers

The following are expected to be focus areas for the next few years

- Top-down design
- RF
- MEMS
- Compact modeling

how big can you dream?™

cādence

Top-Down Design

4 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

Design Challenge: Size and Complexity

- Increasing complexity as circuits become larger
 - Increasing integration
 - To reduce cost, size, weight, and power dissipation
 - Digitalization
 - Both digital information and digital implementation
- Increasing complexity of signal processing
 - Implementation of algorithms in silicon
 - Adaptive circuits, error correction, PLL's, etc.
- Designers must improve their productivity to keep up

Slides from EPD 2001, AACD 2000

Productivity: Improving CAD is not Enough

"Fundamental improvements in design methodology <u>and</u> CAD tools will be required to manage the overwhelming design and verification complexity"

Dr. H. Samueli, co-chairman and CTO, Broadcom Corp. Invited Keynote Address, "Broadband communication ICs: enabling high-bandwidth connectivity in the home and office", *Slide supplement 1999 to the Digest of Technical Papers*, pp. 29-35, International Solid State Circuits Conference, Feb 15-17, 1999, San Francisco, CA

Design Productivity

- Huge productivity ratio between design groups
 - As much as 14x (Collett International, 1998)
- In a fast moving market
 - Cannot overcome this disparity in productivity by working harder
 - Must change the way design is done
- Cause of poor productivity: Using a bottom-up design style
 - Problems are found late in design cycle, causing substantial redesign
 - Simulation is expensive, and so usually inadequate
 - Inadequate verification requires silicon prototypes
 - Today's designs are too complex for bottom-up design style
 - Too many serial dependencies

- To handle larger and more complex circuits
 - Need better productivity
 - Need divide and conquer strategy
- To address time-to-market
 - Must effectively utilize more designers
 - Must reorganize design process
 - More independent tasks
 - Reduce number of serial steps

The Solution

- A formal top-down design process ...
 - That methodically proceeds from architecture to transistor level
 - Where each level is fully designed before proceeding to next level
 - Where each level is fully leveraged in design of next level
 - Where each move is verified before proceeding
- Careful verification planning involving ...
 - System verification through simulation
 - Mixed-level verification through simulation
 - A modeling plan that maximizes efficacy and speed of simulation
 - Full chip simulation only when no alternatives exist
- Test development that proceeds in parallel with design

- Rapidly explore and verify architecture via simulation
 - Using Verilog-AMS provides a smooth transition to circuit level
 - VHDL-AMS or Simulink could also be used, but more cumbersome
- Provides greater understanding of system early in design process
 - Rapid optimization of architecture
 - Discard unworkable architectures early
- Moves simulation to front of design process
 - Simulation is much faster
 - Block specs driven by system simulation

Partitioning

- Find appropriate interfaces and partition
 - Clever partitioning can be source of innovation
 - Joining normally distinct blocks can payoff in better performance
 - LO and mixer, S&H and ADC, etc.
 - Budget specifications for blocks
 - System simulation and experience used to set block specifications
 - Document interfaces
- Formal partitioning supports concurrent design
 - Better communication
 - Design of blocks proceeds in parallel
 - Allows more engineers to work on the same project

Pin-Accurate Top-Level Schematic

- Develop pin-accurate top-level schematic
 - Behavioral models represent the blocks
 - Faithfully represents block interfaces
 - Levels, polarities, offsets, drive strengths, loading, timing, etc.
- Distribute to every member of the team
 - Acts as executable specification and test bench
 - Acts as DUT for test program development
- Owned by chip architect
 - Cannot be changed without agreement from affected team members
 - Changes to interfaces not official until TLS updated and redistributed

Mixed-Level Simulation (MLS)

- Verify circuit blocks in context of system
 - Individual blocks simulated at transistor level
 - Rest of system at behavioral level
- Simulate with pin-accurate block models
 - Verifies block interface specifications
 - Eases integration of completed blocks
- Only viable approach to verify complex systems
 - Can improve simulation speed by order of magnitude over full transistor level simulation

Simulation and Modeling Plans

- Identify areas of concern, develop verification plans
 - Maximize use and efficacy of system-and mixed-level simulation
 - Minimize need for full-chip transistor-level simulation
- Modeling plan developed from simulation plan
 - There may be several models for each block
 - Several simple models often better than one complex one
 - Consider loading, bias levels and headroom, etc.
- Developed and enforced by the chip architect
- Up front planning results in ...
 - More complete and efficient verification
 - Fewer design iterations

SPICE Simulation

- Use selectively as needed
 - Mixed-level simulation
 - Verify blocks in context of system
 - Hot spots
 - Critical paths
 - Start-up behavior
- The idea is not to eliminate SPICE simulation, but to ...
 - Reduce the time spent in SPICE simulation while ...
 - Increasing the effectiveness of simulation in general

Top-Down Design Is ...

cădence

• A way of trading ...

An up-front investment in planning and modeling

- For ...
 - A well controlled design process
 - More predictable
 - Fewer unpleasant surprises
 - Fewer design iterations
 - More parallelism

Top-Down Design ...

- Is not going to happen on its own
- It is a formal top-down design process that requires a serious commitment through out the entire design process
- It requires a substantial investment in education and infrastructure
- Any design group that attempts it without adequate training, management support, and planning is likely to fail
- It is much easier the second time around

Top-Down Design Impediments

- Lack of acceptance
 - Designers use bottom-up design or lazy top-down design
 - They do not follow formal top-down design principles
 - Partition design using well specified and verified interfaces
 - Develop verification and modeling plans in advance
 - Avoid unverified translations
 - Mixed-level simulation
- Lack of qualified engineers
 - Need strong modeling, simulation, and application background

What is Needed

- A long term perspective
- Extensive model libraries
 - Reduced barrier to entry
 - Learn by example
- Improved education and training
 - Must train modeling
 - Must train top-down design
 - Must train both inside and outside universities
 - University classes, workshops, books, articles, etc.
- Model extraction and fitting tools

Bears muzzle No. 12 Huskies

CAL DEFEATS WASHINGTON FOR 1ST TIME IN 26 YEARS

San Jose Mercury News, 6 October 2002

how big can you dream?™

cādence

RF Design

21 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

Modeling Challenges in RF Design

- High-level modeling
- Transition from high-level model to implementation
- Distributed component modeling

High-Level Modeling of RF Systems

- Today
 - Simulators (Matlab & Simulink, Ptolemy, SPW)
 - Spreadsheets (Excel)
- Missing in action
 - VHDL-AMS
 - Verilog-AMS
 - Verilog-A

- + RF model libraries (generic & standards)
- + RF analysis (test benches and measurement)
- Smooth transition to implementation
- AMS languages can help solve implementation issue But must catch up in libraries & analysis

- Behavioral models translate RF metrics into system metrics
 - Through simulation
- Standard RF metrics
 - Gain, iIP₃, noise figure
- Standard system metrics
 - BER, EVM, ACPR
 - Determining these metrics is very compute intensive
 - Simulations must be very fast

Suppressed Carrier Modeling

- Assume signals of the form $v(t) = \text{Re}\{(I(t) + jQ(t))e^{j\omega t}\}$
- Passband model maps $v_{in}(t)$ to $v_{out}(t)$

• Baseband model maps $I_{in}(t)$ and $Q_{in}(t)$ to $I_{out}(t)$ and $Q_{out}(t)$

• More efficient because time point density is much lower

Two Types of RF Models

- Passband Models
 - Does not suppress the carrier
 - Good for implementation and validation
 - Too slow for architectural exploration
- Baseband Equivalent Models
 - Highly effective at exploring the architectural space.
 - Specify components in terms of RF metrics.
 - Measure performance in terms of system metrics.

Transition to Implementation

- Use baseband-equivalent models for architectural exploration
- Use passband models in transition to implementation
 - Allows more detail in the model
 - Compatible with transistor-level simulation
- Co-simulate baseband and passband models
 - Use modulators and de-modulators as interface elements
- Issue
 - Baseband models pass 2 numbers (I & Q) per wire
 - Perhaps more, harmonics, impedance, etc.
 - Verilog-A/MS does not support this

cadence

- Extension of Verilog-A/MS to support composite signals
- Library of self-consistent passband and baseband models
- Application support
 - Standard-based test benches
 - RF analyses and measurements

Distributed Components

- Generally described in the frequency-domain
 - Naturally compatible with harmonic balance
 - More work needed to support in transient-based simulators
- VHDL-FD or VHDL-RF/MW
 - Proposes to add frequency-domain modeling to VHDL-AMS
- Trend is away from describing distributed models with equations
 - Measurements use tables of S-parameters
 - Electromagnetic solvers either use S-parameters or ROMs

Frequency-Domain Modeling

- Few situations where users are comfortable writing a distributed model using expressions involving frequency
 - Skin effect: $R = R_0 \sqrt{f}$
 - System level models: $v_{out}(f) = v_{in}(f)$ for $f < f_0$ and 0 otherwise
- Often models are non-physical
 - Non-causal, non-passive, etc. (ex: above models are noncausal)
 - Results in large errors and various numerical problems
 - Transient-base simulators struggle with such models
 - Harmonic balance simulators increasingly struggle
 - Envelope is time-domain based; pre-convergence transient
- Very easy and common for users to write non-physical models

- Provide hooks to test equipment and EM solvers
 Table models (S-parameter files) or ROMs
- frequency
 - Improve simulator implementations
 - Improve frequency-domain expression language
 - Develop language that naturally avoids causality issues

Extending AMS into Frequency-Domain

how big can you dream?™

cādence

MEMS

33 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

Hierarchical Levels of Abstraction in Suspended MEMS

NODAS MEMS Cell Library

- NODAS is the MEMS schematic design library developed at Carnegie Mellon.
- Goal: Develop and validate reusable parameterized cell library and tools

COMB DRIVE-Y

ANCHOR

T. Mukherjee, et al., *IEEE TCAD of Int. Circuits and Systems*, Dec. 2000. G. K. Fedder and Q. Jing, *IEEE TCAS-II*, Oct. 1999.

Circuit representations of suspended MEMS can be partitioned into four basic lumped-parameter elements: plates, beams, gaps, and anchors

Multi-Level Design Reuse

Elements (symbols and models) can be reused in new designs Low-level elements are: Anchor Beam Plate ■ Gap Comb

Layout Generation

Automated layout is hierarchically p-cell (parameterize d cell) driven directly from elements

Gyroscope Schematic Design Entry

MEMS hierarchical cells provide ability to start simple and add detail later

- Interoperable components at several levels of abstraction
- Only two kinds of MEMS components in this view

JarnegieMellon

MEMS at Next Level: Spring & Comb Cell

Extreme detail with only four MEMS components

- A anchor
- B beam

- C comb-finger capacitor
- P plate mass

Gyroscope Layout Generation

All necessary geometric information embedded in schematic

Cantilever Beam Example

CarnegieMellon

Μ

Μ

E

Assume conducting beam:
Kirchhoff's current law (KCL)
Σ i = 0
Assume 2-D operation (x-y plane):
Force balance:
Σ F_x = 0; Σ F_y = 0
Moment balance:
Σ M = 0

Position and Displacement

Layout position
X, Y, Z
Orientation angles, α, β, γ
Displacement
δ_x, δ_y, δ_z
θ_z, θ_x, θ_y

MEMS Circuit Representation: Cantilever Beam Example

Circuit:

Schematic components have geometric parameters

- Nodes are labeled a and b
- Across variables are v_a and v_b
 - Voltage 'across' resistor is v_b v_a
- Through variables are i_a and i_b
 - Current 'through' resistor is i_a (or i_b)

Model determines $i_a = f(v_a, v_b)$ and $i_b = f(v_a, v_b)$

Across variables (x, y, θ_z)

Positive valued displacements are in positive axial direction

JarnegieMellor

Μ

Μ

Positive valued angles are counterclockwise around axis

Across variables (x, y, θ_z)

Positive valued displacements are in positive axial direction

JarnegieMellor

Μ

Μ

Positive valued angles are counterclockwise around axis

Across variables (x, y, θ_{z})

Positive valued displacements are in positive axial direction

JarnegieMellor

Μ

Μ

Positive valued angles are counterclockwise around axis

 y_a is negative; y_b is positive

OUS CarnegieMellor

Μ

F

Across variables (x, y, θ_z)

- Positive valued displacements are in positive axial direction
- Positive valued angles are counterclockwise around axis

both θ_a and θ_b are positive

Through variables (F_x, F_y, M_z)

- Force flowing into node acts in positive axial direction
- Moment flowing into node acts counterclockwise around axis

Through variables (F_x, F_y, M_z)

- Force flowing into node acts in positive axial direction
- Moment flowing into node acts counterclockwise around axis

MEMS Circuit Representation: Cantilever Beam Example

Circuit:

Across variables: displacement, angle, voltage
 Through variables: force, moment, current
 Branch relations: Σ i = 0; Σ F = 0; Σ M = 0

What is Needed to Support MEMS?

- Extend Verilog-A/MS to support composite, multidimensional signals (X, Y, Z, α, β, γ, V)
- Carefully resolve tolerancing issues
 - Develop natures with appropriate tolerances, pointers to derivative and integral natures
 - Develop modeling guidelines to improve use of tolerances
 - Implement tolerancing features of language in simulators
- Develop MEMS library
- Improve visualization tools

how big can you dream?™

Compact Modeling

54 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

Issues in Compact Modeling

cādence

- BSIM3v3 requires 40k lines of code
 - Can take 1 year or more to schedule a model
 - Can take 6 months or more to implement a model
 - Can take 2 months or more to enhance a model
 - Including time to develop the model, and time to adopt release that contains it, it can take several years between when an engineer requests a model and when it is available
- Simulation vendors only support most popular models
 - Access to specialty models suffers
 - Many modeling groups struggle to contribute
 - Users must make do without the models they need

Slides from CMC 2002

- Can take a long time to include important new effect into models
 - Leakage, RF effects, etc.
- Models inefficiently implemented
 - Models too large, implementers too rushed, to effectively optimize models
 - Difficult trade-off between efficiency and time required to implement model
 - Core functions are huge (containing more than 2500 lines for BSIM3v3)
 - Too large for optimizing compilers
 - Bloated models
 - With few models, those available must do everything

Issues in Compact Modeling

- Slight difference in models between simulators, extractors
 - Causes extra work to extract and support multiple versions of models
 - Causes confusion, finger pointing
- There is too much distance between model developers and users
 - Takes too much time
 - Middle men are often reluctant partners with competing objectives
 - Frustrating for users (need help) and developers (want to help)

- Few models are available
- They run slowly
- They take a long time to get
- Users have little control of what they get
- Model developers and users are disempowered, frustrated
- Models are hard to develop and establish
 - Takes the fun out of modeling
 - Makes it hard to recruit new talent to the field

Model Compiler

- Develop models in Verilog-A
 - It's easy to use (a language that is designed for modeling)
 - Make and try changes with quick turn around time
 - Works in all analyses (DC, AC, noise, transient, RF, etc.)
 - Test models on real circuits (ring oscillators, etc.)
- Compile in to multiple simulators
 - Exactly the same model for all simulators & extractors
 - Expect better than hand-coded performance (eventually)
 - Avoids errors that result during conversion to C
- Eliminates middle men, empowers model developers and users
 - Encourages open-source model development

Motorola's ADMS

Lemaitre, CICC 2002

Why Verilog-A

- It's a good fit
 - It's a language designed for modeling
 - Compatible with SPICE-class simulators, does not require full MS simulator
- It's a standard
 - It is not proprietary, can be implemented & supported by anybody
 - Behavioral model benefit from association with compact models
 - Compilers, optimizers, documentation, etc.
 - Compact model benefit from association with behavioral models
 - Increased attention and investment
 - More people will know language
- Rapid testing of models
 - Interpreted versions exist
 - Modify and test model without compiling

Example: Diode

module diode (a, c); electrical a, c; **branch** (a, c) res, cap; **parameter real** is = 1e-14 from (0:inf); // resistive parameters **parameter real** tf = 0, cjo = 0, phi = 0.7; // capacitive parameters **parameter real** kf = 0, af = 1, ef=1; // noise parameters analog begin $l(res) \leq is (limexp(V(res)/$vt) - 1);$ I(cap) <+ ddt(tf*I(res) - 2*cjo*sqrt(phi*(phi*V(cap)))); I(res) **<+ white noise**(2*'P_Q*I(res)); I(res) <+ flicker_noise(kf*pow(l(res), af), ef);</pre> One Simple Model Works in All Analyses end – DC, AC, Noise, Transient, RF –

endmodule

Extending Verilog-A

- Improved documentation
 - Model, parameters, terminals, etc.
- Modular model support
 - Declare variables where used
 - Define multiple versions with same parameters but different speed/accuracy tradeoffs
 - Allow user to easily specify version as configuration

- Optional terminals
- Required parameters
- Initialized variables
- Output, op-point parameters
- Multiplicity factor
- Gmin support
- Frequency-domain descriptions.
- Simulator specificity

cadence

- Multiple simulator & extractor support
 - Need a compelling set of simulators & extractors supported
 - Model writers must believe that their models will see substantial use
 - Foundries, users must see compelling advantage to switch
 - Reduced model support costs
 - Improved model quality, performance, coverage, accuracy, timeliness, ...
- Available Models
 - Need a compelling set of models available in Verilog-A
 - Would be best if they were exclusively available in Verilog-A

- More nimble model development and support process
 - Companies can ask local universities to develop specialized models
 - Model fixes can be turned around in hours
 - Will be important if models begin to change at < 90nm
- A healthier, more open modeling community
 - Enables an open-source approach to development and support
 - Allows more people to contribute
 - Allows compact modeling to expand beyond MOS and BJT models

how big can you dream?™

cādence

Onward ...

66 CADENCE DESIGN SYSTEMS, INC.

2002 IEEE INTERNATIONAL WORKSHOP ON BEHAVIORAL MODELING AND SIMULATION

Looking Back

- As a community, we have accomplished a great deal
 - Standard languages
 - Simulators
 - Model libraries
 - IP libraries
- While you are here ...
 - Take time to celebrate all that we have accomplished

Looking Forward

- We still have much to do
 - Improve the languages, tools and libraries
 - Educate the masses
 - Branch out into new areas
 - Automate the model generation process ???
- If we are successful, we will have accomplished something great
 - We will have changed the way design and simulation are done
 - Remember to occasionally step back and look at the big picture
 - Admire it, then do something to make it better

how big can you dream?™