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Abstract — RF circuits exhibit several distinguishing
characteristics that make them difficult to simulate
using traditional SPICE transient analysis. The various
extensions to the harmonic balance and shooting
method simulation algorithms are able to exploit these
characteristics to provide rapid and accurate simula-
tion for these circuits.

This paper is an overview of RF simulation beginning
with the characteristics of RF circuits that distinguish
them from traditional analog circuits. Harmonic bal-
ance and shooting methods are described along with
several important extensions. The emphasis is on pre-
senting the algorithms at a conceptual level to provide
a basic understanding of the operation and capabilities
of the algorithms. Finally, it is shown how these tech-
niques are applied to make common RF measure-
ments.

I.  INTRODUCTION

The increasing demand for low-cost mobile communica-
tion systems has greatly expanded the need for simulation
algorithms that are both efficient and accurate when
applied to RF communication circuits.

This paper is an introduction to RF simulation methods
and how they are applied to make common RF measure-
ments. It describes the unique characteristics of RF cir-
cuits, the methods developed to simulate these circuits,
and the application of these methods. See [15] for a recent
survey of RF simulation methods.

II.  WIRELESS COMMUNICATION

In wireless communication, signals are sent through the
ether between two transceivers, a transceiver being a com-
bination of a transmitter and a receiver. To avoid interfer-
ence, each pair of transceivers in a particular location are
assigned a band of frequencies over which they communi-
cate. The job of a transceiver is to translate the signals to
be communicated to and from the assigned band. They
must pass the communications faithfully despite the short-
comings of the ether as a channel. In particular, signals
generally exhibit high attenuation and are subject to large
interfering signals.

A.  Small Desired Signals

Receivers must be very sensitive to detect small input sig-
nals. Typically, receivers are expected to operate with as
little as 1 µV at the input. The sensitivity of a receiver is
limited by the noise generated in the input circuitry of the
receiver. Thus, noise is a big concern in receivers and the
ability to simulate noise is very important. As shown in
Figure 1, a typical superheterodyne receiver first filters
and then amplifies its input with a low noise amplifier or
LNA. It then translates the signal to the intermediate fre-
quency or IF by mixing it with the first local oscillator or
LO. The noise performance of the front-end is determined
by the LNA, the mixer, and the LO. While it is possible to
use traditional SPICE noise analysis to find the noise of the
LNA, it is useless on the mixer and the LO because the
noise in these blocks is strongly influenced by the large
LO signal. 

The small input signal levels requires that receivers must
be capable of a tremendous amount of amplification.
Often as much as 120 dB of gain is needed. With such high
gain, any coupling from the output back to the input can
cause problems. One important reason why the superhet-
erodyne receiver architecture is used is to spread that gain
over several frequencies to reduce the chance of coupling.
It also results in the first LO being at a different frequency
than the input, which prevents this large signal from con-
taminating the small input signal. For various reasons, the
direct conversion or homodyne architecture is a candidate
to replace the superheterodyne architecture in some wire-
less communication systems [1,24,25]. In this architecture
the RF input signal is directly converted to baseband in
one step. Thus, most of the gain will be at baseband and
the LO will be at the same frequency as the input signal. In

Fig. 1.  A coherent superheterodyne receiver.
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this case, the ability to verify design in the face of small
amounts of coupling is quite important and will require
careful modeling of the significant stray signal paths, such
as coupling through the substrate, between package pins
and bondwires, and through the supply lines.

B.  Large Interfering Signals

Receivers must be sensitive to small signals even in the
presence of large interfering signals. This situation arises
when trying to receive a weak or distant transmitter with a
strong nearby transmitter broadcasting in an adjacent
channel. The interfering signal can be 60-70 dB larger
than the desired signal and can act to block its reception by
overloading the input stages of the receiver or by increas-
ing the amount of noise generated in the input stage. Both
of these problems result if the input stage is driven into a
nonlinear region by the interferer. To avoid these prob-
lems, the front-end of a receiver must be very linear. Thus,
linearity is also a big concern in receivers. Receivers are
narrowband circuits and so the nonlinearity is quantified
by measuring the intermodulation distortion. This involves
driving the input with two sinusoids that are in band and
close to each other in frequency and then measuring the
intermodulation products. This is generally an expensive
simulation with SPICE because many cycles must be com-
puted in order to have the frequency resolution necessary
to see the distortion products.

Distortion also plays an important role in the transmitter
where nonlinearity in the output stages can cause the band-
width of the transmitted signal to spread out into adjacent
channels. This is referred to as spectral regrowth because,
as shown in Figure 2, the bandwidth of the signal is lim-

ited before it reaches the transmitter’s power amplifier or
PA, and distortion in the PA causes the bandwidth to
increase again. If it increases too much, the transmitter
will not meet its adjacent channel power requirements
(ACPR). When transmitting digitally modulated signals,
spectral regrowth is virtually impossible to predict with
SPICE. The transmission of at least 1000 digital symbols
must be simulated to get a representative spectrum, and

this combined with the high carrier frequency makes use
of transient analysis impractical.

III.  CHARACTERISTICS OF RF CIRCUITS

RF circuits have several unique characteristics that are bar-
riers to the application of traditional circuit simulation
techniques. Over the last decade, researchers have devel-
oped many special purpose algorithms that overcome
these barriers to provide practical simulation for RF cir-
cuits, often by exploiting the very characteristic that repre-
sented the barrier to traditional methods. 

A.  Narrowband Signals

RF circuits process narrowband signals in the form of
modulated carriers. Modulated carriers are characterized
as having a periodic high-frequency carrier signal and a
low-frequency modulation signal that acts on either the
amplitude, phase, or frequency of the carrier. For example,
a typical cellular telephone transmission has a 10-30 kHz
modulation bandwidth riding on a 1-2 GHz carrier. In gen-
eral, the modulation is arbitrary, though it is common to
use simple periodic or quasiperiodic modulations con-
structed from a small number of sinusoids for test signals.

The ratio between lowest frequency present in the modula-
tion and the frequency of the carrier is a measure of the
relative frequency resolution required of the simulation.
General purpose circuit simulators, such as SPICE, use
transient analysis to predict the nonlinear behavior of a cir-
cuit. Transient analysis is inefficient when it is necessary
to resolve low modulation frequencies in the presence of a
high carrier frequency because the high-frequency carrier
forces a small time step while a low-frequency modulation
forces a long simulation interval.

Passing a narrowband signal though a nonlinear circuit
results in a broadband signal whose spectrum is relatively
sparse, as shown in Figure 3. In general, this spectrum

consists of clusters of frequencies near the harmonics of
the carrier. These clusters take the form of a discrete set of
frequencies if the modulation is periodic or quasiperiodic,
and a continuous distribution of frequencies otherwise.

Fig. 2.  A digital direct conversion transmitter.

Serial to
Parallel

LPFs

PA

sin(ωt)

cos(ωt)

in

I

Q

Fig. 3.  Spectrum of a narrowband signal centered at a carrier
frequency fc after passing though a nonlinear circuit.

f
fc 2fc 3fc



KUNDERT: INTRODUCTION TO RF SIMULATION  AND ITS APPLICATION 3

RF simulators exploit the “sparse” nature of this spectrum
in various ways and with varying degrees of success.
Steady-state methods are used when the spectrum is dis-
crete, and transient methods are used when the spectrum is
continuous.

B.  Time-Varying Linear Nature of the RF Signal Path

Another important but less appreciated aspect of RF cir-
cuits is that they are generally designed to be as linear as
possible from input to output to prevent distortion of the
modulation or information signal. Some circuits, such as
mixers, are designed to translate signals from one fre-
quency to another. To do so, they are driven by an addi-
tional signal, the LO, a large periodic signal the frequency
of which equals the amount of frequency translation
desired. For best performance, mixers are designed to
respond in a strongly nonlinear fashion to the LO. Thus,
mixers behave both near-linearly (to the input) and
strongly nonlinearly (to the LO).

Since timing or synchronization signals, such as the LO or
the clock, are not part of the path of the information signal,
they may be considered to be part of the circuit rather than
an input to the circuit as shown in Figure 4.

This simple change of perspective allows the mixer to be
treated as having a single input and a near-linear, though
periodically time-varying, transfer function. As an exam-
ple, consider a mixer made from an ideal multiplier and
followed by a low-pass filter. A multiplier is nonlinear and
has two inputs. Applying an LO signal of  con-
sumes one input and results in a transfer function of

, (1)

which is clearly time-varying and is easily shown to be lin-
ear with respect to vin. If the input signal is

, (2)

then

(3)

and

. (4)

This demonstrates that a linear periodically-varying trans-
fer function implements frequency translation.

Often we can assume that the information signal is small
enough to allow the use of a linear approximation of the
circuit from its input to its output. Thus, a small-signal
analysis can be performed, as long as it accounts for the
periodically varying nature of the signal path, which is
done by linearizing about the periodic operating point.
This is the idea behind the small-signal analyses of Section
VI. Traditional simulators such as SPICE provide several
small-signal analyses, such as the AC and noise analyses,
that are considered essential when analyzing amplifiers
and filters. However, they start by linearizing a nonlinear
time-invariant circuit about a constant operating point, and
so generate a linear time-invariant representation, which
cannot exhibit frequency translation. By linearizing a non-
linear circuit about a periodically varying operating point,
we extend small-signal analysis to circuits that must have
a periodic timing signal present to operate properly, such
as mixers, switched filters, samplers, and oscillators (for
oscillators the timing signal is the desired output of the
oscillator, while the information signal is generally an
undesired signal, such as the noise). In doing so, a periodi-
cally varying linear representation results, which does
exhibit frequency translation.

All of the traditional small-signal analyses can be
extended in this manner, enabling a wide variety of appli-
cations (some of which are described in [33]). In particu-
lar, a noise analysis that accounts for noise folding and
cyclostationary noise sources can be implemented [20,28],
which fills a critically important need for RF circuits.
When applied to oscillators, it also accounts for phase
noise [3,4,10,11].

C.  Linear Passive Components

At the high frequencies present in RF circuits, the passive
components, such as transmission lines, spiral inductors,
packages (including bond wires) and substrates, often play
a significant role in the behavior of the circuit. The nature
of such components often make them difficult to include in
the simulation. 

Generally the passive components are linear and are mod-
eled with phasors in the frequency-domain, using either
analytical expressions or tables of S-parameters. This
greatly simplifies the modeling of distributed components
such as transmission lines. Large distributed structures,
such as packages, spirals, and substrates, often interface

Fig. 4.  One can generally approximate a nonlinear
periodically-driven circuit (above) with a linear
periodically-varying circuit (below).
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with the rest of the circuit through a small number of ports.
Thus, they can be easily replaced by a N-port macromodel
that consists of the N2 transfer functions. These transfer
functions are found by reducing the large systems of equa-
tions that describe these structures, leaving only the equa-
tions that relate the signals at their ports. The relatively
expensive reduction step is done once for each frequency
as a preprocessing step. The resulting model is one that is
efficient to evaluate in a frequency-domain simulator if N
is small. This is usually true for transmission lines and spi-
rals, and less often true for packages and substrates.

Time-domain simulators are formulated to solve sets of
first-order ordinary-differential equations (ODE). How-
ever, distributed components, such as transmission lines,
are described with partial-differential equations (PDE) and
so are problematic for time-domain simulators. Generally,
the PDEs are converted to a set of ODEs using some form
of discretization [17]. Such approaches suffer from band-
width limits. A alternative approach is to compute the
impulse response for a distributed component from a fre-
quency domain description and use convolution to deter-
mine the response of the component in the circuit [9,30].
Evaluating lossy or dispersive transmission line models or
tables of S-parameters with this approach is generally
expensive and error-prone [31]. Packages, substrates and
spirals can be modeled with large lumped networks, but
such systems can be too large to be efficiently incorpo-
rated into a time domain simulation, and so some form of
reduction is necessary [5,22].

IV.  BASIC RF BUILDING BLOCKS

RF systems are constructed primarily using four basic
building blocks — amplifiers, filters, mixers, and oscilla-
tors. Amplifiers and filters are common analog blocks and
are well handled by SPICE. However, mixers and oscilla-
tors are not heavily used in analog circuits and SPICE has
limited ability to analyze them. What makes these blocks
unique is presented next.

A.  Mixers

Mixers translate signals from one frequency range to
another. They have two inputs and one output. One input is
for the information signal and the other is for the timing
signal, the LO. Ideally, the signal at the output is the same
as that at the information signal input, except shifted in
frequency by an amount equal to the frequency of the LO.
As shown in Section III-B, a multiplier can act as a mixer.
In fact, a multiplier is a reasonable model for a mixer
except that the LO is generally passed through a limiter to
make the output less sensitive to noise on the LO. Gener-
ally, the limiter is an integral part of the mixer.

The input and output signals of a mixer used for up-con-
version (as in a transmitter) are shown in Figure 5. The LO

is shown after passing through the limiter so that the out-
put in the time-domain is simply the product of the inputs,
or the convolution of the two inputs in the frequency
domain. The information signal, here a modulation signal,
is replicated at the output above and below each harmonic
of the LO. These bands of signal above and below each
harmonic are referred to as sidebands. There are two side-
bands associated with each harmonic of the LO. The ones
above the harmonic are referred to as the upper sidebands
and the ones below are referred to as the lower sidebands.
The sideband at DC is referred to as the baseband. The
size of each sideband is determined by the size of its asso-
ciated harmonic.

When the LO has a rich harmonic content, an input signal
at any sideband will be replicated to each of the sidebands
at the output. To select the desired sideband, the mixer is
followed by a filter.

Consider a down-conversion mixer (as in a receiver) and
assume the mixer is followed by a filter. This filter is used
to remove all but the desired channel. The output of the
mixer/filter pair is sensitive to signals in each sideband of
the LO. Associated with each sideband is a transfer func-
tion from that sideband to the output. The shape of the
transfer function is determined largely by the filter. Thus,
the bandwidth of the passband is that of the filter. If the fil-
ter is a bandpass, then the passband of the transfer function
will be offset from the LO or its harmonic by the center

Fig. 5.  Signals at the inputs and outputs of an up-conversion
mixer. The modulation signal is mixed up to the upper and
lower sidebands of the LO and its harmonics.
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frequency of the filter. These passbands are referred to as
the images of the filter and are shown in Figure 6.

B.  Oscillators

Oscillators generate a reference signal at a particular fre-
quency. For example, they are used to generate the LO for
mixers. In some oscillators, referred to as VCOs for volt-
age controlled oscillators, the frequency of the output var-
ies proportionally to some input signal.

Compared to mixers, oscillators seem quite simple. That is
an illusion.

Consider the trajectory of an oscillator’s stable periodic
orbit in state space. Furthermore, consider disturbing the
oscillator by applying an impulse u(t) = δ(t). The oscillator
responds by following a perturbed trajectory v(t) + ∆v(t) as
shown in Figure 7, where v(t) represents the unperturbed
solution and ∆v(t) is the perturbation in the response. 

Decompose the perturbed response into amplitude and
phase variations.

(5)

where α(t) represents the variation in amplitude, φ(t) is the
variation in phase, and fc is the oscillation frequency.

Since the oscillator is stable and the duration of the distur-
bance is finite, the deviation in amplitude eventually
decays away and the oscillator returns to its stable orbit. In
effect, there is a restoring force that tends to act against
amplitude noise.

However, since the oscillator is autonomous, any time-
shifted version of the solution is also a solution. Once the
phase has shifted due to a perturbation, the oscillator con-
tinues on as if never disturbed except for the shift in the
phase of the oscillation. There is no restoring force on the
phase and so phase deviations accumulate.

After being disturbed by an impulse, the asymptotic
response of the amplitude deviation is α(t) → 0 as t → ∞.
However, the asymptotic response of the phase deviation
is φ(t) → ∆φ. If responses that decay away are neglected
then the impulse response of the phase deviation φ(t) can
be approximated with a unit step s(t). Thus, the phase shift
over time for an arbitrary u is

(6)

or the power spectral density (PSD) of the phase is

. (7)

The disturbance u may be either deterministic or random
in character and my result from extraneous signals cou-
pling into the oscillator or from parametric variations in
the components that make up the oscillator.

If Su(f) is white, then Sφ(f) is proportional to 1/(2πf)2. This
result has been shown to apply at low frequencies, but with
a more detailed derivation is can also be shown to be true
over a broad range of frequencies [10]. Define a such that

(8)

where fc = 1/T is the carrier frequency. Sφ is the PSD of the
phase variable in (5). Phase is not directly observable so
instead one is often interested in the PSD of the signal ∆v.
Demir [4] shows that near the fundamental

, (9)

Fig. 6.  Images at the input of the first mixing stage of a
typical receiver. The images are frequency bands where the
output is sensitive to signals at the input.

Fig. 7.  The trajectory of an oscillator shown in state space
with and without a perturbation ∆v. By observing the time
stamps (t0 ,..., t6) one can see that the deviation in amplitude
dissipates while the deviation in phase does not.
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where fm is the frequency offset from the fundamental and
V1 is the first Fourier coefficient for v, 

. (10)

This spectrum is a Lorentzian with corner frequency aπfc
2

and is shown in Figure 8. As t → ∞ the phase of the oscil-

lator drifts without bound, and so Sφ(fm) → ∞ as fm → 0.
However, as fm → 0 the PSD of the signal S∆v(fc + fm) →
|X1|2/(aπ2fc

2), which is inversely proportional to a. Thus,
the larger a, the more phase noise, the higher the corner
frequency and the lower the low frequency noise level.
This happens because the phase noise does not affect the
total power in the signal, it only affects its distribution.
Without phase noise, S∆v(f) is a series of impulse functions
at the harmonics of fc. With phase noise, the impulse func-
tions spread, becoming fatter and shorter but retaining the
same power [4].

It is more common to report phase noise as L, the ratio of
the single-sideband (SSB) phase noise power to the power
in the fundamental (in dBc / Hz)

. (11)

At frequencies above the corner aπfc
2, the phase noise is

approximated with1

. (12)

In the case where u represents flicker noise, Su(f) is gener-
ally pink or proportional to 1/ f. Then Sφ(fm) would be pro-
portional to 1/ f 3.

1. Many other references report that L(fm) = Sφ(fm)/2, which is true
when Sφ is the single-sided PSD [27,36]. In this paper, Sφ is the doubled-
sided PSD.

V.  LARGE SIGNAL RF SIMULATION  TECHNIQUES

Transient analysis, shooting methods, and harmonic bal-
ance represent the base methods from which RF simula-
tion methods are constructed. They are introduced in this
section with a brief discussion of their strengths and weak-
nesses. References are given to allow the methods to be
studied in more depth [15].

A.  Transient Analysis

Transient analysis breaks the time continuum into a series
of adjacent short intervals and uses low-order polynomials
to approximate the solution over each interval (the time
step) with the constraint that the solution must be continu-
ous across interval boundaries (the time points).

Transient analysis can be inefficient with modulated car-
rier circuits because the high frequency carrier requires a
high density of points and the low frequency modulation
will require a long simulation interval. Typically at least
20 timepoints are needed per cycle of the high frequency
carrier and the carrier frequency will be up to a million
times higher than the modulation frequency. The result is
an extremely long simulation because of the number of
timepoints that must be computed. In addition, long time
constants in the circuit can require an even longer simula-
tion interval.

B.  Harmonic Balance

Harmonic balance [14,16] formulates the circuit equations
and their solution in the frequency domain as a Fourier
series. Fourier series cannot represent transient behavior,
and so harmonic balance directly finds the steady-state
solution. The linear device equations are actually formu-
lated in the frequency domain using phasor analysis. How-
ever, this is generally not practical or desirable for the
nonlinear device equations. Instead, the nonlinear devices
are evaluated in the time domain. First the signals driving
the nonlinear devices are converted from the frequency to
the time domain using the inverse Fourier transform. The
nonlinear devices are evaluated for a complete period of
the time-domain waveform and the resulting response
waveforms are converted back into the frequency domain
using the Fourier transform.

An extremely important application of harmonic balance
is determining the steady-state behavior of oscillators. To
do so, it is necessary to modify harmonic balance to
directly compute the operating frequency [14,26]. The
Fourier transform is defined for periodic signals, however
several methods have been developed to extend harmonic
balance to handle quasiperiodic signals [14,37]. In addi-
tion, it has also be extended to allow the Fourier coeffi-
cients to be vary slowly with time [6,15,18,29]. These
methods are referred to as envelope methods and are used

Fig. 8.  Two different ways of characterizing phase noise in
an oscillator. Sφ is the power spectral density (PSD) of the
phase and L is PSD of the signal normalized to the power in
the fundamental.
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to simulate modulated carrier signals where the modula-
tion is not a repetitive signal.

The main strength of harmonic balance is its natural sup-
port for linear frequency-domain models. Distributed com-
ponents such as lossy and dispersive transmission lines
and interpolated tables of S-parameters from either mea-
surements or electromagnetic simulators are examples of
linear models that are handled easily and efficiently with
harmonic balance.

Harmonic balance struggles on circuits that contain signals
that exhibit sharp transitions, as is common in mixers and
oscillators. In this case, a large number of frequencies is
needed to accurately represent the signal, which increases
the expense of harmonic balance. In addition, the magni-
tude of the harmonics drop slowly for signals with sharp
transitions, making it difficult to know how many harmon-
ics must be computed by harmonic balance. If too few har-
monics are included, the results are inaccurate, if too many
are included, the simulations are impractical. And often,
increasing the number of harmonics include makes the
simulation impractical before it makes it accurate.

C.  Shooting Methods

Transient analysis solves initial-value problems. A shoot-
ing method is an iterative procedure layered on top of tran-
sient analysis that is designed to solve boundary-value
problems. In the case of a periodic steady-state solution,
the boundary condition is simple: the state of the circuit at
the start of the period must be the same as at the end. With
shooting methods, an initial state is chosen, the circuit is
simulated for one cycle, and the final state is compared to
the initial state. The initial state is adjusted and the proce-
dure repeats until the initial and final states are the same
[2,14,32,34].

As with harmonic balance, extensions exist that naturally
handle autonomous [14], quasiperiodic [14], and transient
modulated [13,21] carriers. The quasiperiodic shooting
methods are referred to as mixed frequency-time methods
and the transient shooting methods are referred to as enve-
lope following.

Shooting methods are applied in the same situations as
harmonic balance as long as the circuits do not include
distributed components. It is generally preferred if the cir-
cuit is driven with strongly discontinuous signals (pulses
as opposed to sinusoids). As such, shooting methods are
well suited for simulating switching mixers, switched fil-
ters, samplers, frequency dividers, and relaxation oscilla-
tors.

VI.  SMALL -SIGNAL RF SIMULATION  TECHNIQUES

As pointed out in Section III-B, RF circuits can often be
accurately modeled as linear periodically-varying circuits.
Doing so is referred to periodic small-signal analysis
because the input is assumed small enough so that it does
not cause a nonlinear response. Periodic small-signal anal-
ysis provides significant advantages over trying to get the
same information from a equivalent large signal analysis.
First, they can be much faster. Second, a wider variety of
analyses are available. For example, noise analysis is
much easier to implement as a small signal analysis.
Finally, they can be more accurate if the small signals are
very small relative to the large signals. Small signals
applied in a large signal analysis can be overwhelmed by
errors that stem from the large signals. In a small signal
analysis, the large and small signals are applied in differ-
ent phases of the analysis. Errors in the large signal phase
typically have only a minor affect on the linearization and
hence the accuracy of the small signal results.

A great deal of useful information can be acquired by per-
forming a small-signal analysis about the time-varying
operating point of the circuit. Small-signal analyses start
by performing the analyses described in the previous sec-
tion to compute the periodic operating point with only the
large timing or synchronization signals applied (the LO or
the clock). The circuit is then linearized about this time-
varying operating point and the small information signal
applied. The response is calculated using linear time-vary-
ing analysis.

Consider a circuit whose input is the sum of two periodic
signals, u(t) = uL(t) + us(t), where uL(t) is an arbitrary peri-
odic waveform with period TL and us(t) is a sinusoidal
waveform of radial frequency ωs whose amplitude is
small. In this case, uL(t) represents the timing signal and
us(t) represents the information signal.

Let vL(t) be the steady-state solution waveform when us(t)
is zero. Then allow us(t) to be small, but nonzero. We can
consider the new solution v(t) to be a perturbation vs(t) on
vL(t), as in v(t) = vL(t) + vs(t). The small-signal solution
vs(t) is computed by linearizing the circuit about vL(t) and
applying one of the methods for finding the steady-state
solution already described. From the theory of periodically
time-varying systems [19,35], it is known that for

(13)

the steady-state response is given by

. (14)

where λ = 2π/TL is the large signal fundamental frequency.
Vs(k) represents the sideband for the kth harmonic of VL. In

us t( ) Use
j ωst=
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this situation, shown in Figure 9, there is only one side-
band per harmonic because Us is a single frequency com-
p lex exponent ia l  and the c i r cu i t  is  l inear.  Th is
representation has terms at negative frequencies. If these
terms are mapped to positive frequencies, then the side-
bands with k < 0 become lower sidebands of the harmonics
of vL and those with k > 0 become upper sidebands. 

Vs(k)/Us is the transfer function for the input at ωs to the
output at ωs + kλ. Notice that with periodically-varying
linear systems there are an infinite number of transfer
functions between any particular input and output. Each
represents a different frequency translation.

Extensions: Versions of this small signal analysis exists
for both harmonic balance [8,12] and shooting methods
[19,35]. They can be thought of as the extensions of the
SPICE small-signal analyses to the situation where the cir-
cuit is linearized about a time-varying operating point.
This is sufficient for performing a time-varying AC analy-
sis and can be extended to other types of small-signal anal-
yses, such as computing the S-parameters of the circuit.
These small-signal analyses are also extendable to cyclo-
stationary noise analysis [3,20,28], which is an extremely
important capability for RF designers [33]. In addition,
they can be used to predict the phase noise of oscillators
[4,10,11]. They also have applications outside of RF cir-
cuits. For example, they can be applied to samplers, track-
and-holds, switched-capacitor filters, frequency multipli-
ers, frequency dividers, chopper stabilized amplifiers, etc.

All of these circuits are periodically-driven near-linear sig-
nal processing circuits.

Cyclostationary Noise: With periodically-varying sys-
tems, there are two effects that act to complicate noise
analysis. First, for noise sources that are bias dependent,
such as shot noise sources, the time-varying operating
point acts to modulate the noise sources. Such noise
sources are referred to as being cyclostationary. Second,
the transfer function from the noise source to the output is
also periodically-varying and so acts to modulate the con-
tribution of the noise source to the output.

Modulation is a multiplication of the signals in the time-
domain and so in the frequency-domain the spectrum of
the noise source is convolved with the spectrum of the
transfer function. The transfer function is periodic and so
has a discrete line spectrum. Convolution with a discrete
spectrum involves a countable number of scale, shift, and
sum operations, as shown in Figure 10. The final result is
the sum of the noise contributions both up-converted and
down-converted from each source to the desired output
frequency. This is referred to as noise folding.

Periodic modulation of a stationary noise source, either
from a periodic bias or from a periodically-varying signal
path from the source to the output, results in cyclostation-
ary noise at the output. In stationary noise, there is no cor-
relation between noise at different frequencies. As can be
seen from Figure 10, at frequencies separated by kf cyclo-
stationary noise is correlated, where f is the modulation

Fig. 9.  The steady-state response of a linear periodically-
varying system to a small complex exponential stimulus.
The large signals are represented with solid arrows and the
small signal with hollow arrows.
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frequency and k is an integer [7]. The significance of this
correlation will become apparent in Section VII-C.

VII.  RF MEASUREMENTS

This section introduces several of the most common RF
measurements with a description of how these measure-
ments would be made using an RF simulator.

A.  Conversion Gain and Other Transfer Functions

Conversion gain is the generalization of gain to periodi-
cally-varying circuits such as mixers. It is simply the
small-signal gain through a mixer as a function of fre-
quency. Typically, conversion gain refers to the transfer
function from the desired input to the desired output. But
there are many other transfer functions of interest, such as
the gain from an undesired image or from an undesired
input such as the power supply lines.

Remember that the output signal for a periodically-varying
circuit such as a mixer may be at a different frequency
than the input signal. The transfer functions must account
for this frequency conversion. As described earlier, these
circuits may have many images, and so for a single output
frequency there may be many transfer functions from each
input.

One measures a transfer function of a mixer by applying
the LO, computing the steady-state response to the LO
alone, linearizing the circuit about the LO, applying a
small sinusoid, and performing one of the periodic small-
signal analyses described in Section VI.

B.  AM and PM Conversion

As shown in Figure 9, when a small sinusoid is applied to
a periodically-driven circuit, the circuit responds by gener-
ating both the upper and lower sidebands for each har-
monic. The sidebands act to modulate the harmonics, and
the relationship between the sidebands determines the
character of the modulation. In Figure 11 both the carrier
and the sidebands are phasors. Assume that the sidebands
are small relative to the carrier and that the circuit is driven
at baseband with a small sinusoid with a frequency of fm.
The sideband phasors rotate around the end of the carrier
phasor at a rate of fm, with  the upper sideband rotating one
way and the lower rotating the other. The composite of the
sideband phasors traces out an ellipse as shown in Figure
11b. However, if the two sidebands have identical ampli-
tudes and their phase is such that they align when parallel
to the carrier, the phase variations from each sideband can-
cels with the result being pure amplitude modulation (AM)
as shown in Figure 11c. If instead the amplitudes are iden-
tical but the phases align when perpendicular to the carrier,
then the amplitude variations cancel and the result is
almost purely a phase modulation (PM) as shown in Fig-

ure 11d (assuming the sidebands are small). The DSB
modulation shown in Figure 11b can be considered the
combination of both AM and PM modulation.

AM and PM conversion occurs either when a tone is
injected at either baseband or at a sideband. The former is
referred to as baseband to AM/PM conversion and the lat-
ter is SSB to AM/PM conversion. Both cases were demon-
strated in the case of an oscillator by Razavi [23].

C.  AM and PM Noise

As shown in Figure 10, periodically-driven circuits gener-
ate noise with correlated sidebands. And as shown in Fig-
ure 11, depending on the magnitude and phase of the
transfer-function from the noise source to the output side-
band, the noise at the output of the circuit can be AM
noise, PM noise, or some combination. For example, oscil-
lators almost exclusively generate PM noise near the car-
rier whereas noise on the control input to a variable gain
amplifier results almost completely in AM noise at the
output of the amplifier.

Fig. 11.  How the amplitude and phase relationship between
sidebands cause AM and PM variations in a carrier. The
phasors with the hollow tips represents the carrier, the
phasors with the solid tips represent the sidebands. The upper
sideband rotates in the clockwise direction and the lower in
the counterclockwise direction. The composite noise
trajectory is shown below the individual components. a)
Single-sideband modulation (only upper sideband). b)
Arbitrary double-sideband modulation where there is no
special relationship between the sidebands. c) Amplitude
modulation (identical magnitudes and phase such that
phasors point in same direction when parallel to carrier). d)
Phase modulation (identical magnitudes and phase such that
phasors point in same direction when perpendicular to
carrier).

SSB AM PM
(a) (c) (d)

DSB
(b)

Upper and Lower Sidebands Shown Separately

Sum of Upper and Lower Sidebands



10 BCTM’98

This ability to emphasize one type of noise over another is
a characteristic of periodically-driven circuits. Linear
time-invariant circuits driven by stationary noise sources
can only produce additive noise, which can be decom-
posed into AM and PM noise, but there will always be
equal amounts of both.

D.  Noise Figure

Noise is a critical concern in receivers because of the small
input signals. Typically designers characterize the noise of
individual blocks using the noise figure of the block
because it is relatively simple to combine the noise figure
of cascaded blocks to determine the noise figure of the
entire receiver [24]. The noise figure (NF) of a block is a
measure of how much the signal-to-noise ratio (SNR)
degrades as the signal passes through the block. It is
defined as

(15)

At the input of a receiver the SNR is defined as the signal
power relative to the background noise power picked up by
the antenna. From Figure 6 it is clear that a receiver is sen-
sitive to noise at it input at each of its images. SNRin only
includes the noise power in the images where the input
signal is found. In most communication systems, the input
signal is found in a single sideband, and so single-side
band (SSB) NF is employed. In this case, SNRin includes
only the noise power in that image associated with that
sideband, though SNRout does include the affect of the
input noise from all images. Similarly, SNRout excludes the
noise generated in its load in the band of interest.

One computes the noise of a periodically-driven block by
applying the LO, computing the steady-state response to
the LO alone, linearizing the circuit about the LO, apply-
ing one of the periodic small-signal noise analyses men-
tioned in Section VI.

E.  Intermodulation Distortion

Distortion is commonly measured in narrow-band circuits
by applying two pure sinusoids with frequencies well
within the bandwidth of the circuit (call these frequencies
f1 and f2). The harmonics of these two frequencies would
be outside the bandwidth of the circuit, however there are
distortion products that fall at the frequencies 2f1 – f2, 2f2
– f1, 3f1 – 2f2, 3f2 – 2f1, etc. As shown in Figure 12 these
frequencies should also be well within the bandwidth of
the circuit and so can be used to measure accurately the
intermodulation distortion, or IMD , produced by the cir-
cuit.

Compression and Intercept Points: At low frequencies, it
is common to describe the distortion of a circuit by indi-
cating the distortion in the output signal when driven by a
sinusoid to achieve a certain output level. At high frequen-
cies it is more common to characterize the distortion pro-
duced by a circuit in terms of a compression point or an
intercept point. These metrics characterize the circuit
rather than the signal, and as such it is not necessary to
specify the signal level at which the circuit was character-
ized.

To understand the definition of a compression point and an
intercept point, consider the output power of the funda-
mental and the 3rd order intermodulation product (IM3)
(either 2f1 – f2 or 2f2 – f1) produced by an RF circuit as a
function of input power, as shown in Figure 13.

The 1 dB compression point is the point where the gain of
the amplifier has dropped 1 dB from it small-signal
asymptotic value. iCP1dB is the input power and oCP1dB is
the output power that corresponds to the 1 dB compression
point.

The third-order intercept point IP3 is defined in terms of
the power levels of IM3 as extrapolated from their asymp-
totic small-signal behavior. When the input signal is small,
a doubling of the input power results in a doubling funda-
mental output power and multiplies the output power of
the third order products by 8 (23). Thus, the asymptotic
slope of the fundamental is 1 dB/dB and the asymptotic
slope of the third order products is 3 dB/dB. The third-
order intercept point (IP3) is where the asymptotes for the
third harmonic and the fundamental cross. iIP3 is the input
power and oIP3 is the output power corresponding to the
intercept point.

ACPR and Spectral Regrowth: A very important issue
when transmitting digitally modulated signals is adjacent
channel power. It is important that a transmitter only emit
power in its designated channel. Any power emitted in
adjacent channels can interfere with the proper operation
or nearby receivers that are attempting to receive signals
from distant transmitters. As such, transmitters have strict

NF 10
SNRin

SNRout
-----------------log=

Fig. 12.  A narrowband circuit driven with two closely
spaced sinusoidal tones ( ) responds by generating
harmonics ( ) and intermodulation ( ) tones.
Distortion of the output signal results because several of the
odd-order intermodulation tone fall within the bandwidth of
the circuit.
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adjacent channel power specifications that they must sat-
isfy. Unfortunately, this specification is very difficult to
verify using simulation. Simple two-tone intermodulation
tests are not representative of a digitally modulated sig-
nals. Instead, the transmission of a long pseudorandom
sequence of symbols is simulated. The output spectrum is
calculated from a sequence that typically contains between
1k and 4k symbols. The carrier frequencies are typically in
the 1-5 GHz range and the symbols typically have a rate of
10-300 kHz. Such a simulation is clearly impractical for
traditional transient analysis. Instead, the envelope meth-
ods briefly mentioned in Sections V-B and V-C are used.
However, simulating a 1-4k symbol sequence still requires
between 10k and 100k simulation points, each of which
represents a harmonic balance or shooting method solve,
and so even the envelope methods are extremely expensive
for this type of simulation.

F.  Phase Noise

One can apply the small-signal analyses of Section VI to
oscillators to compute phase noise and sensitivity to small
interfering signals such as those on the power supply. And
as indicated in Sections VII-B and C, these analyses are
able to properly account for frequency conversions and for
the fact that response in the output manifests itself largely
as changes in the phase of the output.

These analyses are small-signal analyses and assume that
the circuit being analyzed does not respond in a nonlinear
way to the small-signal inputs. However, (7) indicates that
even small inputs can generate large changes in the phase
if they are close in frequency to the output or to one of its
harmonics. The output is a linear function of the phase
only for small changes in the phase. If the phase changes
by a significant fraction of a period, the response in a non-
linear way. It is this nonlinear response that causes the
roll-off in L at very low frequencies that is given in (11).
As a result, the small-signal analysis results do not predict

the roll-off and so are inaccurate at frequencies very close
to the carrier or its harmonics.

CONCLUSION

By exploiting the natural characteristics of RF circuits, RF
simulators are able to efficiently perform simulations that
were either impractical or impossible only a short time
ago.
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