
1

Page 1
1

module rlc (a, b)
electrical a, b;
parameter r = 1, l=1, c=1;

analog begin
I(a,b) <+ V(a,b)/r
I(a,b) <+ c*ddt(V(a,b));
I(a,b) <+ idt(V(a,b))/l;

end
endmodule

Simulation of Analog and
Mixed-Signal Circuits

Ken Kundert
Cadence Design Systems, Inc.

Author
Dr. Ken Kundert is a fellow at Cadence Design Systems and for many years has
been the principle architect of the Spectre circuit simulation family. As such, he has
lead the development of Spectre, SpectreHDL, and SpectreRF. He also played a
key role in the development of Hewlett-Packard's harmonic balance simulator and
made substantial contributions to both the Verilog-AMS and VHDL-AMS
languages. He has authored two books on circuit simulation, Steady-State Methods
for Simulating Analog and Microwave Circuits in 1990 and The Designer's Guide to
SPICE and Spectre in 1995, as well as over a dozen papers published in refereed
conferences and journals.

Dr. Kundert received Ph. D., M. Eng., and B. S. degrees in electrical engineering
and computer sciences from the University of California, Berkeley in 1989, 1983
and 1979, respectively. He specialized in circuit simulation and analog circuit
design.

2

Page 2

2 BCTM 98 Tutorial on Circuit Simulation

Outline

Traditional SPICE Simulation
DC
AC and Noise
Transient

Timing Simulation
AHDLs and MSHDLs
RF Simulation (tomorrow)

Abstract
This presentation is a tutorial on circuit simulation for analog and mixed-signal
circuits. The emphasis is presenting information about the way circuit simulators
behave that is useful to the practicing circuit designer. I begin with traditional
SPICE simulation and cover DC, AC, transient and Fourier analyses. Timing
simulation is introduced and contrasted with circuit simulation. Finally, mixed-
signal hardware description languages (MS-HDLs) are presented as a way to
improve the productivity of engineers involved in the design of complex mixed-
signal circuit and Verilog-AMS is introduced.

Target Audience
The primary audience is circuit designers and CAD engineers that use or support
circuit simulators.

3

Page 3

3 BCTM 98 Tutorial on Circuit Simulation

Traditional SPICE Simulation

Formulates a system of differential equations that
describe circuit
Different analyses apply different stimulus and
different assumptions

DC: Equilibrium point (constant waveforms)
AC, Noise: Small-signals (linearity)
Transient: Initial conditions
Steady-State: Periodic boundary conditions

Circuit Simulators
Circuit simulators are programs that from a structural description of a circuit
formulate and solve a system of nonlinear differential equations. In particular, the
simulator formulates a system of nonlinear first-order differential/algebraic
equations. These equations describe the circuit and the simulator solves them in
order to predict the circuit response to a specified stimulus. The nonlinear system of
equations consists of model equations combined with equations that embody
Kirchhoff’s laws. The model equations are either hard-code in the simulator as
built-in models or are specified by the user in the form of behavioral models.
Various analyses apply different assumptions before solving the equations. For
example, DC analysis assumes that all waveforms in the circuits are constant
valued. Doing so allows the system of differential equations to be simplified to a
system of nonlinear algebraic equations that are solved for the equilibrium points of
the circuit. AC analysis assumes the stimulus is a small sinusoid applied as a
perturbation of the DC equilibrium point and that the stimulus was started long ago
so that the circuit has reached its steady-state behavior. Transient analysis assumes
the circuit is driven with some arbitrary stimulus and that the circuit starts from a
particular initial condition, typically the DC operating point. Finally, a steady-state
analysis assumes the circuit is driven with either a periodic or quasiperiodic
stimulus and finds the steady-state response. Unlike with AC analysis, the stimulus
is not assumed to be small.

4

Page 4

4 BCTM 98 Tutorial on Circuit Simulation

Simulation Methods

Cannot directly solve nonlinear differential
equations

Convert differential equations to nonlinear
algebraic equations

Cannot directly solve nonlinear algebraic
equations

Convert nonlinear algebraic equations to
sequence of linear equations (Newton’s method)

Simulation Methods
Once the system of equations that describe the circuit is formulated, it is necessary
to solve it. Unfortunately, there is no known approach to solving a nonlinear system
of differential equations analytically. Simulators solve these equations numerically.
The assumptions in both DC and AC analysis allow the differential equations to be
reformulated as a set of algebraic equations. In transient analysis, integration
methods are applied that convert the differential equations into difference equations
that can be solved by solving a sequence of nonlinear algebraic equations.
There is also no direct method for solving nonlinear algebraic equations. Instead
Newton’s method, which is also known as the Newton-Raphson or NR method, is
used. It is an iterative procedure for solving nonlinear equations that converts the
problem of solving a nonlinear equation into that of solving a sequence of linear
equations.

5

Page 5

5 BCTM 98 Tutorial on Circuit Simulation

Stable Unstable Non-Isolated

DC Analysis

Finds Equilibrium Points
Some circuits have multiple equilibrium points
Equilibrium points may be unstable

Ckt with 3
Equilibrium
Points

Uses Newton’s Method
Solution must be isolated
Convergence is an issue

DC Analysis
DC analysis finds solutions to the systems of equations that describe the circuit that
are constant valued. It does so by simply discarding time-derivatives (since the
solution is constant valued, its time-derivative must be zero). These constant valued
solutions are the equilibrium points of the circuit. It is important to realize that a
single circuit may have more than one equilibrium point and that there are three
types of equilibrium points: stable, unstable, and non-isolated. A stable equilibrium
point is such if a circuit is perturbed slightly while sitting at a stable equilibrium
point, it will eventually return to it. However, when disturbed, a circuit will not
return to an unstable equilibrium point. The latch shown is an example of a circuit
with multiple equilibrium points. Two of the equilibrium points are stable (the one
associated with the output being high, and the other associated with the output low).
The third equilibrium point results with both gates exactly balanced and the output
half way between high and low. This equilibrium point is unstable. Any disturbance
will cause the latch to rapidly switch and settle into one of its two equilibrium
points. DC analysis does not distinguish between stable and unstable equilibrium
points and is just as likely to output an unstable equilibrium point as a stable one.
Non-isolated solutions are those where there are a continuum of solutions.

6

Page 6

6 BCTM 98 Tutorial on Circuit Simulation

Isolated Solutions
Required for convergence

Equal preference for unstable & stable solutions
Examples of non-isolated solutions

Floating nodes
Loops of shorts
Topology checker finds structural problems, but
not parametric problems
Gmin designed to avoid isolated solutions

Examples
CMOS Nand gate
Disconnected back-gate

Non-Isolated Equilibrium Points
Non-isolated equilibrium points typically result from floating nodes (nodes with no
DC path to ground). It also may occur when loops are formed with components that
act as short-circuits at DC (for example, voltage sources or inductors). For practical
reasons, circuit simulators use a version of NR that is not capable of solving a
system of equations with a non-isolated solution, which for DC analysis is the same
as having a non-isolated equilibrium point. Instead, the user is expected to find and
fix such problems. Typically, a topology checker is provided that will quickly
examine the circuit and find structural problems (nodes with no DC path to ground
or loops of short circuits). Occasionally nodes can float because nonlinear devices
turn off. This occurs inside a CMOS nand gate. To avoid this problem, most
simulators add Gmin, a small conductor of typically 10–12 Siemens (1012 Ohms)
across every nonlinear device that is capable of “turning off”. This generally avoids
this problem but Gmin may affect the solution in some cases.

7

Page 7

7 BCTM 98 Tutorial on Circuit Simulation

Newton-Raphson Algorithm (NR)

Find zero crossing starting
with an initial guess
Iteratively refine
guess by solving
series of linear
approximations
NR also knows as
Newton’s Method

I(v)

v
v0v2 v1

Initial Guess
First

Refinement
Second

Refinement
Solution

Newton-Raphson Algorithm
The goal of the Newton-Raphson (NR) algorithm is to find the solution to a
nonlinear equation. This is the point where the curve crosses the x-axis. It is an
iterative procedure that starts with at a starting point that is often referred to as the
“initial guess”. The equation and its derivative is evaluated at this point in order to
construct a linear model of the equation. The value and the slope of the linear model
match that of the equation at the evaluation point. The solution to the linear model,
the point where the line crosses the x-axis, is found and used as the next “guess” as
the procedure repeats. If things go well, each guess is closer to the solution than its
predecessor. Thus, NR starts with an initial guess and iteratively refines it until it
converges to the solution.
The Newton-Raphson algorithm is also referred to as Newton’s method.

8

Page 8

8 BCTM 98 Tutorial on Circuit Simulation

Convergence Criteria

Update criterion | Δv | < ε
Important at high-impedance nodes

Residue criterion
Important at low-impedance nodes
SPICE form: Delta-I check | Δi(v) | < δ
– Assures change in I between iterations is small
– Subject to false convergence

Spectre form: KCL check | Σ i(v) | < δ
– Assures KCL is satisfied

Convergence Criteria
NR is an iterative method, and so some stopping criteria must be applied to prevent
it from continuing forever. Circuit simulators generally have two such criterion,
both of which must be satisfied before convergence is assumed and the iteration
stops. SPICE uses modified nodal analysis, and so it is reasonable to think of NR
finding the voltage at which Kirchhoff’s current law (though the situation is not
quite that simple). In this case, one criterion applies to the update, or the difference
in the voltage between two iterations. The second applies to the value of the
equation. There are two alternative approaches used in this case. SPICE performs
the ΔI check. Thus, it assures that the change in the current through any component
between one iteration and the next is small. Notice that SPICE uses two Δ checks (a
ΔV and a ΔI check). This means that if for some reason the Newton iteration stalls,
which might occur if there is an error in the derivative, then both checks could be
satisfied far from the actual solution. In this case, which is known as false
convergence, the result computed by SPICE is incorrect.
The alternative to the ΔI check is the KCL check. In this case, the convergence
criterion assures that KCL is satisfied within some tolerance. This approach is not
subject to false convergence and so results in more reliable results.
The KCL check is more difficult to implement efficiently than the ΔI check. As a
result, the simulators that provide a KCL check provide it as an option that when
selected provides improved reliability at the cost of reduced performance. Only one
simulator, Spectre, was initially designed to support the KCL check efficiently. As
such, there is no performance penalty associated with the KCL check. In this case,
the ΔI check provides no advantage and so is not provided.

9

Page 9

9 BCTM 98 Tutorial on Circuit Simulation

Convergence of Newton’s Method

Convergence is guaranteed if …
Equations (models) are sufficiently smooth
Solution is isolated
Initial guess is sufficiently close to solution
– Use nodesets to provide initial guess

Convergence of Newton’s Method
Convergence has long been a problem that has plagued circuit designers that use
SPICE. And so designer’s are often surprised when told that Newton’s method has
guaranteed convergence. While true, there are assumptions that must first be
satisfied before convergence is assured, and therein lies the problem.
There are three conditions that must be satisfied before convergence is assured. First
the circuit equations must be sufficiently smooth. This can be assured by proper
modeling (removing the discontinuities from the models). This was a big problem
early on, but it is generally much less of a problem today. The second condition is
that the solution must be isolated. This was discussed previously. Lastly, the initial
guess must be sufficiently close to the solution. This is the difficult condition to
satisfy. Nodesets are provided to allow the user to specify the initial guess, but
generally the designer does not know the solution well enough to provide a useful
initial guess. However, this property exploited by a series of convergence aids that
are referred to as continuation or homotopy methods that can greatly reduce the
number of cases where convergence is a problem.

10

Page 10

10 BCTM 98 Tutorial on Circuit Simulation

Improving Convergence via Homotopy
Homotopy (AKA Continuation) methods

Modify problem so that …
– It is easy to compute solution of modified problem
– A parameter controls the amount of modification

Solve sequence of problems
– Start from “easy” one
– Follow path to desired solution using each point as

guess for next
• Exploits continuity of path
• Exploits NR’s ability to converge if guess is close to

solution

Improving Convergence via Homotopy
When a simulator is unable to achieve convergence with simple NR, it generally
switches to a homotopy or continuation method. Homotopy and continuation are
two names for the same process. The idea behind this process is to solve a series of
problems the first of which is easy to solve and the last of which is the problem for
which we need the solution. The series of problems is created by identifying or
creating some parameter λ in the equations and varying the parameter. The
parameterization must be such that:
1. the equations are easily solved for some value of the parameter, say λ=0,
2. the equations must revert to their original form for some other value of the
parameter, say say λ=1, and
3. the solution trajectory must vary as a continuous function of the parameter
between the two values.

11

Page 11

11 BCTM 98 Tutorial on Circuit Simulation

Homotopy Method

λ

v

Easy Solution

Desired Solution

Solution at each point
is initial guess for next

Homotopy Methods
Continuation and homotopy methods start by setting the parameter to its initial
value and solving the easy problem. They then step the parameter to towards its
final value. On each step the equations are solved using the solution on the previous
step as the initial guess. Since the solution trajectory is continuous, it is always
possible to choose a step small enough so that the solution for the equations at the
previous parameter value is a good guess for the new value of the parameter.

12

Page 12

12 BCTM 98 Tutorial on Circuit Simulation

Homotopy Methods

Source stepping
Sweep supplies from 0 to proper values

GMIN stepping
Sweep GMIN from 1 Ω to 1TΩ

Pseudo-Transient
Add linear capacitors from every node to ground
Sweep time from 0 to ∞

Homotopy Methods
Circuit simulators employ several types of homotopy methods. None are guaranteed
to converge, so often several are available from the same simulator and are tried
sequentially until one works.
The first method is source stepping. In this method, the parameter multiplies values
of the independent sources and sweeps from 0 to 1. When the parameter is 0 the
sources are all zero and the solution must also be zero. The parameter is then swept
to 1, where the source take their desired values. In practice, source stepping
trajectories are plagued by discontinuities called folds and so do not work very well.
Which Gmin stepping, the value of the Gmin conductors are swept from 1 Ohm to
1012 Ohms. Gmin stepping is also subject to folds, but is much less susceptible to
them that source stepping. In generally Gmin stepping works pretty well.
The final approach is to pseudo-transient analysis. In this case 1 farad capacitors are
added from every node in the circuit to ground. Each capacitor starts with an initial
voltage equal to zero and a transient analysis is performed. In this case time is the
homotopy parameter and it sweeps from 0 to infinity. Pseudo-transient analysis is
not subject to folds, however the resulting circuit could oscillate, in which case the
method would never converge.

13

Page 13

13 BCTM 98 Tutorial on Circuit Simulation

Why Homotopy Methods Fail
Simple discontinuities

Error in models
Folds

Occur naturally in ckts
with multiple solutions

Bifurcations
Result from symmetry

Oscillations
Issue with pseudo-
transient methods

Why Homotopy Methods Fail
Homotopy methods are reliable if the homotopy trajectory is continuous when the
parameter sweep is mapped onto the range λ=0 to 1. There are four common forms
of discontinuity that will cause homotopy methods to fail.
The first is the simple discontinuity. This occurs when the model equations
themselves are discontinuous.
The second type of discontinuity is folds, which is a natural consequence of circuits
having multiple solutions. Homotopy methods can be reformulated to be arc-length
methods which are able to handle folds, however such methods must do a certain
amount of work to progress beyond each fold, and some circuits can have a large
number of folds and so can be impractical to solve with arc-length methods. For
example, the simple latch shown earlier had three equilibrium points and so two
folds. If two such circuits were combined the resulting circuit could have 32 = 9
equilibrium points and 9–1 = 8 folds. The combination of three such circuits would
have 33–1 = 26 folds, and so on.
The third type of discontinuity is bifurcation, which results when both the circuit
and the initial starting point is perfectly symmetric. This problem is easily avoided
by providing a random starting point.
The final type of discontinuity is due to oscillation in the pseudo-transient approach.
At first glance pseudo-transient appears to avoid problems with discontinuities.
Indeed, it is not subject to any of the three previously mentioned discontinuities.
However, pseudo-transient sweeps its parameter time for 0 to infinity. When the
time is mapped to λ such that it varies between 0 and 1, the oscillation becomes
infinitely fast as λ goes to 1, which is another form of discontinuity.

14

Page 14

14 BCTM 98 Tutorial on Circuit Simulation

Suggestions for DC Analysis
If convergence is a problem

Heed warnings
Closely examine circuit for mistakes
Use nodesets
Replace DC analysis with Transient/UIC

To assure large circuit is operating properly
Examine composite figures of merit
– Power or supply currents
– Extreme values (Spectre info statement)

Suggestions for DC Analysis
Convergence problems are often a result of mistakes in the netlist. For example,
unreasonable parameter values can cause convergence problems. Another common
cause of convergence problems is forgetting to connect MOSFET back-gates to a
bias supply. Also, the simulator may generate warming messages that could lead
you the the problem area.
If the problem does not appear to be in your circuit, then you can try to provide the
simulator a good guess of the solution using nodesets, perhaps from a previous
simulation. Finally, if that is not practical, one can use a transient analysis with the
UIC option set. Simply set the independent sources to their DC values and simulate
long enough for the solution to settle to its final value. Be sure to write the final
solution to a file so that it can be used as a nodeset for subsequent simulations.
Once the simulator has converged, you must still assure that the solution is as
expected (the circuit may have been entered incorrectly). The easiest way to do that
for a large circuit is to look at composite metrics, such as the circuit power
dissipation or supply currents. If these metrics are well outside of the expected
range, it generally indicates a problem with the circuit.

15

Page 15

15 BCTM 98 Tutorial on Circuit Simulation

Small-Signal Analysis
Apply small sinusoid

Stimulus so small it does not generate nonlinear
response
Linearize circuit about DC operating point

Compute sinusoidal steady state solution
Transfer functions

AC, Noise analyses

L

Small-Signal Analysis
The sinusoidal small-signal analyses, AC and noise, both operate by assuming the
DC solution is by a small sinusoidal excitation. The excitation is assumed to be so
small that the response can be accurately computed by linearizing the circuit about
the DC operating point and solving the linear system. The steady-state solution is
computed directly. Since the circuit is linearized about a DC operating point the
resulting representation of the circuit is linear and time invariant (LTI). The steady-
state response of an LTI circuit to a sinusoid is a sinusoid at the same frequency.
Thus, the AC analysis need only compute the magnitude and phase of the response
relative to the input. Thus, it is useful for computing transfer functions. Noise
analysis is a variation of AC analysis that computes the response of a circuit to
collection of small noise sources.

16

Page 16

16 BCTM 98 Tutorial on Circuit Simulation

Sinusoidal Small-Signal Analysis

Small-signal implies linear analysis
Computes transfer functions
Large signal effects are not modeled
– Distortion, clipping, etc.

Linearized about DC operating point implies
single frequency analysis

Frequency conversion not modeled
Noise folding not modeled
– Not suitable for many communication circuits

Sinusoidal Small-Signal Analysis
AC and noise are sinusoidal steady-state analyses performed on a linearization of
the circuit about its DC operating point. Since the analysis is performed on a linear
approximation to the circuit, the amplitude of the response will always be
proportional to the amplitude of the specified stimulus. As such, AC analysis
computes the transfer function of the circuit and does not take into account large
signal effects such as distortion of clipping.
In addition, since the circuit is linearized about the DC operating point, the resulting
LTI representation does not accurately model frequency conversion or noise
folding. For information on small-signal analyses that accurately account for
frequency conversion, refer to the tutorial on RF simulation.

17

Page 17

17 BCTM 98 Tutorial on Circuit Simulation

Circuits Suitable for AC & Noise Analysis
Suitable

Amplifiers
Continuous-Time
Filters

Not Suitable
Mixers
Oscillators and VCOs
Samplers, Sample & Holds
Discrete-Time Filters
– Switched-Capacitor Filters
– Switched-Current Filters

Chopper-Stabilized Amplifiers
Frequency Multipliers and Dividers
Phase Detectors
Parametric Amplifiers
Detectors

Circuits Suitable for AC and Noise Analysis
The circuits that are suitable for AC and noise analysis are those that operate near
their DC operating point. Many circuits, particularly those used in communication
applications do not operate about a DC operating point. All of the circuits listed
above that are unsuitable for AC and noise analysis only operate properly with a
large, usually periodic, signal applied. For example, mixers need an LO signal to
operate and switched-capacitor filters need a clock.

18

Page 18

18 BCTM 98 Tutorial on Circuit Simulation

Transient Analysis

Approximates solution to differential equation
starting from an initial condition

Time is discretized
Solution is approximated with piecewise
polynomial
Polynomial coefficients chosen such that
differential equation is satisfied at each time
point

Transient Analysis
In transient analysis, the differential equation that represents the circuit is
approximated with a difference equation that is then solved one timepoint at a time.
This is done by first discretizing time, and then approximating the solution
trajectory of the circuit with a low-order polynomial over each timestep. Using a
low-order polynomials are used because it is possible to analytically compute their
derivatives as a function of their end points. In this way, the derivatives in the
differential equation are replaced by finite-difference approximations. Then the
polynomials coefficients are chosen such that the finite-difference approximation to
the differential equation is satisfied at each timepoint.

19

Page 19

19 BCTM 98 Tutorial on Circuit Simulation

Forward Euler (FE)

Backward Euler (BE)

Trapezoidal Rule (TR)
(FE, BE combined)

Gear’s Backward Difference Formula (G2)

Integration Methods

& ()v v vk h k k- -= -1
1

1

& () &v v v vk h k k k= - -- -
2

1 1

&v v v vk h k h k h k= - +- -
3

2
2

1
1

2

& ()v v vk h k k= - -
1

1

Integration Methods
There are many different finite-difference approximations that can be used, and
each has different characteristics. The ones that are commonly used in circuit and
timing simulation are shown above. Notice that the trapezoidal rule is simply the
sum of forward Euler and backward Euler.

20

Page 20

20 BCTM 98 Tutorial on Circuit Simulation

Example

Formulate KCL

Replace d/dt operator with discrete-time approximation
Forward Euler –– An Explicit Method

Backward Euler –– An Implicit Method

Cv t Gv t i t&() () ()+ + = 0

C
h

v v Gv ik k k k()- + + =- - -1 1 1 0

C
h

v v Gv ik k k k()- + + =-1 0

Example
In this example, the equation to be solved is simply Kirchhoff’s Current Law
combined with the model equations. The derivative is replaced by either the forward
Euler or the backward Euler finite difference approximation. h is the timestep.
Doing so converts the differential equation into a difference equation that can be
solved one step at a time.
Forward Euler is an explicit method and backward Euler is an implicit method. This
distinction is important, though in this example it is not obvious why one is implicit
and the other explicit. Unfortunately I will not give a rationale here. If you are
interested, I suggest you refer to a book on numerical methods.

21

Page 21

21 BCTM 98 Tutorial on Circuit Simulation

Stability and Stiff Circuits

Stiff circuits are ones with time constants much
shorter than timestep

Explicit methods (FE) are unstable on stiff ckts
– Stability bounds time step
– Only used in timing simulation, not circuit simulation

Implicit methods (BE, TR, G2) are stiffly-stable
TR is average of FE and BE and so is marginally
stable on stiff circuits

Marginal stability manifests itself as ringing

Stability and Stiff Circuits
Stiff circuits are those that contain time constants that are much shorter than the
timestep. In order for the timestep to be larger than a time constant, the time
constant must not be active, otherwise the timestep must be reduced to follow the
time constant. Such time constants are common in electrical circuits. Even if the
time constants are initially excited, the response decays rapidly. Once their response
has died out, it is important to be able to increase the size of the timestep to
efficiently follow the response of the rest of the circuit, which is slow relative to the
time constant. However, some integration methods, forward Euler in particular, are
unstable on stiff circuits. Thus, when using forward Euler on stiff circuits the
timestep must be chosen small relative to the fastest time constant to avoid stability
problems. For this reason, forward Euler is not efficient when applied to stiff
circuits.
Backward Euler, trapezoidal rule, and Gear’s second-order backward difference
formula are all stiffly stable, meaning that they are stable on stiff circuits. However,
trapezoidal being the combination of forward and backward Euler is only
marginally stable. As a result, trapezoidal rule will exhibit a point-to-point ringing
on stiff circuits.

22

Page 22

22 BCTM 98 Tutorial on Circuit Simulation

Trapezoidal Rule Ringing

TR rings on stiff circuits
Marginal stability
Characteristic point-to-point ringing

Trapezoidal Rule Ringing
Trapezoidal rule exhibits a characteristic point-to-point ringing when applied to stiff
circuits. This ringing can be reduced and often eliminated by adjusting tolerances so
that the timestep size is reduced.

23

Page 23

23 BCTM 98 Tutorial on Circuit Simulation

Artificial Numerical Damping

Gear2, BE are overly stable

Gear 2 Backward Euler

Artificial Numerical Damping
Backward Euler and Gear2 are not without faults. Both are overly stable and so
exhibit artificial numerical damping. Thus they add loss to circuits. This is
noticeable when simulating an LC tank circuit. If excited, it should oscillate forever
because the loss mechanisms are not included in the simulation. And if trapezoidal
rule is used, that is exactly what happens. However, if either Gear2 or backward
Euler are used, the amplitude of the oscillation asymptotically decays. They add
damping even though none exists in the circuit. Backward Euler adds considerably
more damping than Gear2.

24

Page 24

24 BCTM 98 Tutorial on Circuit Simulation

Artificial Numerical Damping
Gear2, BE are overly stable

Gear 2

Backward Euler

Trapezoidal

Artificial Numerical Damping
Backward Euler and Gear2 are not without faults. Both are overly stable and so
exhibit artificial numerical damping. Thus they add loss to circuits. This is
noticeable when simulating an LC tank circuit. If excited, it should oscillate forever
the loss mechanisms are not included in the simulation. And if trapezoidal rule is
used, that is exactly what happens. However, if either Gear2 or backward Euler are
used, the amplitude of the oscillation asymptotically decays. They add damping
even though none exists in the circuit. Backward Euler adds considerably more
damping than Gear2.

25

Page 25

25 BCTM 98 Tutorial on Circuit Simulation

Truncation Error
Error made by replacing d/dt operator with
discrete-time approximation

– Shrinking timestep reduces error

Local truncation error (LTE)
Error made on a single step

Global truncation error
Maximum truncation error
Global truncation error depends on circuit
– Error may either accumulate or dissipate

Truncation Error
Truncation error is the error made by an integration method when it replaces the
time-derivative with a finite-difference approximation. At each time point a small
amount of error is created. This is referred to as local truncation error or LTE. The
global truncation error is the accumulated effect of the LTE made on each step. The
LTE is determined by the integration method, but how that error accumulates to
form global truncation error is determined by the circuit.

26

Page 26

26 BCTM 98 Tutorial on Circuit Simulation

Dissipative Circuit: Errors Fade

Error current results from not satisfying KCL
• Use superposition to study effect of small errors separately

O
ne-Tim

e
E

rror
C

ontinuous
E

rror

Error Stimulus Error Response

Dissipative Circuit: Errors Fade
If the circuit is dissipative, i.e. if the circuit has no long time constants, then the
error made on each timestep will fade with time. The time constants of the error will
be those of the circuit.

27

Page 27

27 BCTM 98 Tutorial on Circuit Simulation

Non-Dissipative Circuits: Errors Accumulate

Circuits with long time-constants

O
ne-Tim

e
E

rror
C

ontinuous
E

rror

Error Stimulus Error Response

Non-Dissipative Circuit: Errors Accumulate
If the circuit has long time constants, then the local truncation errors tend to
accumulate. The circuit above has an infinitely long time constant and the effect of
a one time error is retained for ever. The effect of a sequence of errors is integrated.

28

Page 28

28 BCTM 98 Tutorial on Circuit Simulation

Error Accumulation in Transient Analysis

Circuits with long time-constants require tighter
tolerances

Integrators
Charge-storage circuits
– Switched-capacitor filters
– Sample & holds

Oscillators
– Phase drift

Error Accumulation in Transient Analysis
If the circuit has long time constants, then the local truncation errors tend to
accumulate. Thus, one has to be more careful on circuits with long time constants.
Examples of such circuits include oscillators, integrators, and charge-storage
circuits. In the case of an oscillator, the errors will cause the phase to drift. The
integration methods tend to under estimate curvature and so in an oscillator the LTE
is correlated in such a way to cause the phase to drift so that the simulator slightly
underestimates the oscillator frequency.

29

Page 29

29 BCTM 98 Tutorial on Circuit Simulation

Estimating Local Truncation Error

Simulators choose timestep to control LTE
Integration methods are exact if trajectory follows
low-order polynomial
– First-order methods (FE, BE) are exact for lines
– Second-order methods (TR, G2) are exact for parabolas

LTE is difference between actual trajectory and
trajectory extrapolated using low-order polynomial

vk− 2

vk− 1 vk

vpred

LTE LTE = vk− vpred

Estimating Local Truncation Error
In transient analysis the size of the timestep is chosen so as to control LTE. To do
so, one needs an estimate of the LTE.
In transient analysis, the waveform is discretized and approximated by a piecewise
low-order polynomial. If the actual solution trajectory follows a low-order
polynomial, then solution computed by the integration method will be exact. Thus,
if the true solution can be represented exactly by the polynomial used in the
integration method, there will be no LTE. In this case the solution predicted by
extrapolating with a polynomial of the same order from previously computed points
will exactly match the true solution. Thus, the measure we will use for the LTE is
difference between the extrapolate solution and the computed solution. If that LTE
measure is above a threshold, the timepoint will be rejected and the timestep shrunk.
If it is below a threshold, the next timestep will be larger than the one used at the
current step.

30

Page 30

30 BCTM 98 Tutorial on Circuit Simulation

Controlling Error in Charge vs. Voltage
Voltage is interesting quantity, not charge
SPICE controls error in charge

Large voltage error possible on stiff circuits
– Small charge error on small capacitor could cause large error in

voltage

Spectre controls error in voltage

SPICE Spectre

Controlling Error in Charge vs. Voltage
SPICE performs LTE computations based on charge waveforms. But charge is an
uninteresting variable. The variable that is of interest to the user is most often
voltage, so it is best to control the LTE in voltage rather than charge. On stiff
circuits, the LTE in charge can be quite small even though the LTE in voltage is
large. As a result, SPICE can give poor answers as shown above. Both waveforms
are the voltage waveform computed by the simulators using default tolerances. The
fact that Spectre controls LTE in voltage rather than charge results in its answer
being much more accurate.

31

Page 31

31 BCTM 98 Tutorial on Circuit Simulation

Initial Conditions

UIC
ICs used are exactly those specified
Any ICs not specified are taken to be 0
Conflicting ICs are resolved on first timestep
– Charge is conserved

Non-UIC
ICs forced with V-sources and 1Ω resistors
Any ICs not specified are computed
Unexpected behavior on parallel LC circuits

Initial Conditions
There are two types of initial conditions, UIC and non-UIC. UIC initial conditions
are used exactly as specified, however any unspecified are taken to be zero. Any
conflicting initial conditions, which might occure on loops of capacitors or cutsets
of inductors, are resolved in one timestep by conserving charge and flux.
Non-UIC initial conditions are forced replacing capacitors with voltage sources in
series with small resistors and by replacing inductors with current sources in parallel
with large resistors. The DC solution is then computed. This works reasonable well
in many cases and unlike with UIC initial conditions, allows a small set of initial
conditions to be specified with the remaining set computed. However, in some
situations, such as with parallel LC tanks, the results are unexpected.

32

Page 32

32 BCTM 98 Tutorial on Circuit Simulation

Charge Conservation

Capacitance-based models
Models without explicit charge function do not
conserve charge
Only old SPICE MOS models are written this
way (Meyer MOSCAP model in MOS1-2-3)

Charge-based models
Models conserve charge
Simulator may not conserve charge
– Set reltol, abstol tight to control KCL violation

Charge Conservation
Old MOS models often do not conserve charge and so should not be used where
charge conservation is important, such as on charge storage circuits such as
switched-capacitor circuits. However, even when charge conserving models, the
simulator itself only approximates KCL on each step and so does not precisely
conserve charge. To improve this situation, tighten reltol and abstol.

33

Page 33

33 BCTM 98 Tutorial on Circuit Simulation

Fourier Analysis
Computes Fourier coefficients of signals

Often called upon to deliver extreme precision
– Time-domain waveforms generally expected to

accurately resolve to 0.1% or 60 dB
– Fourier analysis often expected to resolve signals to

120 dB or 0.0001%

SPICE Fourier analysis is notoriously inaccurate
Dominant error is from interpolation
– Other errors: simulator noise, aliasing, transients,

incorrect period

Fourier Analysis
Fourier analysis is used to compute the spectrum of transient waveforms. Because
of the nature of Fourier analysis, it is often called upon to deliver extreme precision.
For example, users often want 120 dB of resolution from Fourier analysis, which is
1 part per million, whereas they are happy with 60 dB of resolution or one part per
thousand with the results from standard transient analysis.
SPICE’s Fourier analysis is notoriously inaccurate, often giving no better than 40
dB accuracy.

34

Page 34

34 BCTM 98 Tutorial on Circuit Simulation

Interpolation Error

Error in linear interpolated ideal sine wave
50 time points gives contamination at -54 dB

-0.0020

-0.0010

0.0000

0.0010

0.0020

Difference between Cosine and Linearly Interpolated Cosine

Interpolation Error in Fourier Analysis
There are many sources of error in Fourier analysis, including incomplete settling of
the waveform, using the wrong period, aliasing, and simulator noise. However, the
most troubling source of error results from interpolation. Since SPICE generates
unequally spaced points and Fourier analysis requires equally spaced points, the
waveforms must be interpolated before Fourier analysis. The above figure shows
the error generated as a result of interpolation. An ideal cosine wave was sampled
and linearly interpolated using 50 points. This interpolated waveform was then
subtracted from the original waveform to show the error created by interpolation.
The spectrum computed for the interpolated waveform is equal to the spectrum of
the original waveform plus the spectrum of the error waveform shown. The error
waveform has spurs as high as –54 dB which directly act to limit the resolution of
the Fourier analysis.

35

Page 35

35 BCTM 98 Tutorial on Circuit Simulation

Interpolation Error in Fourier Analysis

Linear interpolation accurate to 1% ~ 0.1%
With default settings
SPICE compounds problem with
– Poorly chosen defaults
– Non-obvious control mechanisms

Prevents resolution greater than 40 ~ 60 dB
To achieve high resolution with SPICE

Tighten Tstep, Tmax, and reltol
Necessary even with external Fourier analyzer

Interpolation Error in Fourier Analysis
Interpolation errors typically limit Fourier analysis resolution to 40-60 dB with
default settings. The timestep must be significantly reduced in order to lower the
interpolation error. SPICE compounds the problem by providing poorly chosen
defaults and non-obvious control mechanisms. To improve Fourier analysis
accuracy, tighten time step and the tolerances. Methods for doing this are described
in my book The Designer’s Guide to SPICE and Spectre, published by Kluwer
Academic Publishers in 1995.

36

Page 36

36 BCTM 98 Tutorial on Circuit Simulation

Outline

Traditional SPICE Simulation
DC
AC and Noise
Transient
Fourier

Timing Simulation
AHDLs and MSHDLs
RF Simulation (tomorrow)

37

Page 37

37 BCTM 98 Tutorial on Circuit Simulation

Dynamic Timing Simulation
Fast, reduced accuracy simulation for large MOS
digital circuits
Basic approach

Partition into small subcircuits
Explicit integration methods
Simplified Models

Requires strong assumptions about circuit
Consequence of violates assumptions

Incorrect, though often plausible, results

38

Page 38

38 BCTM 98 Tutorial on Circuit Simulation

Partitioning

Partition into single node or small subckts
Reduces/eliminates cost of matrix operations
Exploits multirate behavior

Partitioning requires …
Loosely coupled subcircuits
– Largely unidirectional subckts with weak feedback
– Capacitors to ground at every node

Scheduling
– Subckts evaluated in order of signal propagation
– No tight feedback loops

39

Page 39

39 BCTM 98 Tutorial on Circuit Simulation

Explicit Integration Methods

Timing simulators use forward Euler
Eliminates cost of matrix
Eliminates cost of nonlinear solve
– Assuming only linear capacitors

Explicit integration methods require …
Nonstiff circuits
– All time constants roughly same size

40

Page 40

40 BCTM 98 Tutorial on Circuit Simulation

Simplified Models

Linearize capacitors
Discard floating capacitors

Approximate with grounded Miller capacitors
Discard subtleties of models

Back-gate bias effects
Subthreshold effects
Nonlinear capacitance

41

Page 41

41 BCTM 98 Tutorial on Circuit Simulation

Limitations of Timing Simulation

Suitable only for MOS digital circuits
Not all MOS digital circuits
– Memories (memory cell, sense amps)
– Busses can be a problem

No analog circuits
No bipolar circuits

42

Page 42

42 BCTM 98 Tutorial on Circuit Simulation

Mixed-Signal Timing Simulation

Timing simulation extended to handle small
analog & bipolar subcircuits

Timing simulation on digital sections
Circuit simulation on analog sections

Requires
Reliable identification of analog/bipolar sections
Full circuit simulation on those sections

43

Page 43

43 BCTM 98 Tutorial on Circuit Simulation

MS Timing Simulation Requires ...

Subcircuit-based partitioning
Analog/bipolar circuits must be kept together
Partitioner must reliably recognize analog cells
Partitioner must reliably handle feedback

Implicit integration methods
At least for analog/bipolar subcircuits

Two sets of models
Accurate set for analog subcircuits
Approximate set for digital subcircuits

44

Page 44

44 BCTM 98 Tutorial on Circuit Simulation

Timing Simulation vs. Circuit Simulation

Timing simulation only beneficial when digital
circuitry dominates simulation time

Little performance benefit over circuit
simulation if analog circuitry dominates

Timing simulation much riskier
Much higher chance of incorrect results
Simulators often require significant manual
tweaking to avoid
– Inaccurate results
– Performance problems

45

Page 45

45 BCTM 98 Tutorial on Circuit Simulation

Outline

Traditional SPICE Simulation
DC
AC and Noise
Transient
Fourier

Timing Simulation
AHDLs and MSHDLs
RF Simulation (tomorrow)

46

Page 46

46 BCTM 98 Tutorial on Circuit Simulation

Performance Improvements in SPICE
SPICE

Only incremental improvements expected
– 2-4x over last 10 years

Dramatic speed-up on selected types of circuits
– RF simulation

Timing Simulation
10-100x SPICE on MOS digital circuits
Limited speed-up on mixed-signal circuits
– Speed-up limited by amount of analog circuitry
– Increased risk and hassle
– Applicable only on selected types of circuits

Performance Improvements in SPICE
SPICE-like simulators have incrementally improved their performance over time.
There has been perhaps a 2-4x speed performance improvement over the last ten
years independent of any improvements due to the underlying hardware. And except
certain classes of circuits where it is possible to apply special purpose simulation
algorithms, no dramatic performance improvements are anticipated.
Timing simulation offers dramatic performance improvements on MOS digital
circuits, however the speedup on mixed-signal circuits is limited by the analog
circuitry. Typically the best that is achieved is a 2-5x speedup. In addition, timing
simulation often struggles on analog circuitry. Users often have to spend
considerable time adjusting the simulator to get it to behave properly, which is not
always possible.
Some are proposing simulation on parallel processors as a way to accelerate SPICE
simulation. However, this approach also provides limited speedup, typically 2-4x,
an only on specific types of circuits.

47

Page 47

47 BCTM 98 Tutorial on Circuit Simulation

Performance Improvements?

Designers ask for better performance …
What they need is better productivity!

Performance Improvements?
Improving the performance of SPICE will help designers be more productive,
however substantial productivity improvement only comes by changing ones
approach. In particular, using only transistor level simulation, regardless of how fast
the simulator, still requires the designer to design to the transistor level before the
design can be verified. Productivity can be increased dramatically by moving the
verification earlier in the design. This is the idea behind using an hardware
description langauge.

48

Page 48

48 BCTM 98 Tutorial on Circuit Simulation

Design Productivity

14x productivity ratio between companies
Best practices today

3 Months for complex mixed-signal design
Nearly 100% first pass success rate

Reasons for poor productivity
Today’s designs are much more complex
Designers still using bottom-up design style
Simulation occurs too late in the design
Inadequate simulation results in respins

Design Productivity
At DAC this year, Ron Collett of Collett International presented study of 21 chip
designs from 14 leading semiconductor companies that showed that the relative
productivity of the top company was 14 times that of the least productive.
Productivity was measured in terms of normalized transistors designed in per person
per week. Productivity is most affected by three factors, the people, the
methodology, and the tools. Optimal productivity is achieved when all three of
these factors are working together to support each other. Thus, the best tool is not
necessarily be the fastest tool. Instead, it is the tool that best fits into and supports
the methodology. And the best methodology is not the one that reduces the time
required for a particular step in the design, it is the one that reduces the time to
complete the entire design. To significantly improve productivity, it may be
necessary to change both the design methodology and the tools, and then train the
people to use both such that they achieve maximum benefit.
With proper methodology and tools, it is currently possible to consistently produce
complex mixed-signal chips in 3 months with no respins. This is the level of
productivity of Cadence’s mixed-signal design center, which uses a top-down
design methodology built on Cadence’s mixed-signal design tool suite.

49

Page 49

49 BCTM 98 Tutorial on Circuit Simulation

The Secret to High Productivity

Top-down design methodology
Up-front design and verification of architecture
before detailed design of blocks

Mixed-level simulation
Pin-accurate block-diagram simulation with
– One block at transistor level
– Abstract models for remaining blocks

The Secret to High Productivity
With the increasing complexity of designs, it is becoming extremely important to
move to a top-down design methodology. In top-down design, more time is spent
exploring, designing, and verifying the system at the architectural level before the
detailed design of the individual blocks is begun. However another important aspect
is mixed-level simulation, which provides the infrastructure to to support the design
process through out the entire life of the design. Mixed-level simulation is the
ability to support both high-level modeling and simulation as well as transistor- or
SPICE-level simulation simultaneously. During the design process, only high-level
simulation is used until the design progresses to the point where the partitioning into
blocks is complete, and both the behavior and the interface of each block is defined.
At this point, the architecture would be described with interface-accurate block
models. At this point the mixed-level simulation becomes critical. As the blocks are
designed to the transistor level, they can be substituted for the corresponding
behavioral model and simulated with the rest of the system. This allows the block to
be verified in the context of the whole system. This approach allows a design to be
partitioned into blocks with each block being designed in parallel with confidence
that the blocks will work properly when they are integrated together.

50

Page 50

50 BCTM 98 Tutorial on Circuit Simulation

Benefits of Top-Down Design (TDD)

Greater understanding of system early
Rapid optimization of architecture
Moves trades to front of design process
Discard unworkable architectures early

Moves simulation to front of design process
Simulation is much faster
Block specs driven by system simulation
Supports partitioning and budgeting analysis
Develop simulation and test strategies

Benefits of Top-Down Design (TDD)
The basic principle of top-down design is to design and verify the system at an
abstract level before beginning design at the next level down. It is appropriate
whenever there is sufficient complexity at the system level. Employing top-down
design gives designers a better understanding of the system and allow them to make
design tradeoffs in the system architecture early in the design process. Thus, it
reduces the chance that blocks will have to be redesigned because they were
originally designed with incorrect assumptions. It also naturally supports concurrent
design once the system has been specified because the block designers can work
relatively autonomously and the system engineer can work to develop the
simulation and test plan.
An important step in the top-down design process it to take the system architecture
to the point where the details of the interfaces between the blocks are specified and
verified. This means that system simulation should be performed with pin-accurate
block models. This helps guide the structure of the design and verifies the interfaces
between the blocks. It is also a the first step towards mixed-level simulation which
will allow the blocks to be verified in the context of the system.

51

Page 51

51 BCTM 98 Tutorial on Circuit Simulation

Benefits of Mixed-Level Simulation (MLS)

Verify Circuit Blocks in Context of System
Blocks simulated at transistor level
Rest of system at behavioral level
System & block designers use same simulator

Simulate with Pin-Accurate Block Models
Verifies block interface specifications
Eases integration of completed blocks

Only Viable Approach to Verify Complex Systems

Mixed-Level Simulation
Mixed-level simulation is used during top-down design to verify large complex
mixed-signal systems, and it is the only feasible approach currently available. Some
propose to use either timing simulators (sometimes referred to as fast or reduced
accuracy circuit simulators) or real circuit simulators running on parallel processors.
However, both approaches defer system-level verification until the whole system is
available at transistor level, and neither provide the performance nor the generality
needed to verify most mixed-signal systems.
In mixed-level simulation, the system, described at a high level, acts as a test-bench
for the block, which is described at the transistor level. Thus, the block is verified in
the context of the system, and it is easy to see the effect of imperfections in the
block on the performance of the system. Mixed-level simulation requires that both
the system and the block designers use the same simulator and that it be well suited
for both system- and transistor-level simulation.
Mixed-level simulation allows a natural sharing of information between the system
and block designers. When the system level model is passed to the block designer,
the the behavioral model of a block becomes an an executable specification and the
description of the system becomes an executable test bench for the block. When the
transistor level design of the block is complete, it is easily included in the system
level simulation by the system designer.

52

Page 52

52 BCTM 98 Tutorial on Circuit Simulation

SPICE Simulation

Use Selectively as Needed
Mixed-level simulation
– Verify blocks in context of system

Hot spots
Critical paths
Start-up behavior

SPICE-Level Simulation
Circuits are getting more complex in two different ways at the same time. First,
circuits are becoming larger. Consider wireless products. 30 years ago a typical
transceiver contained between 5 and 10 transistors whereas it is common for a
modern cell phone to contain between 1M and 10M transistors. Second, the
operation of the circuits are becoming more complex. 20 years ago integrated
circuits generally consisted of simple functional blocks such as opamps and gates.
Verification typically required simulating the block for two or three cycles. Today,
mixed-signal chips implement complex algorithms that require simulations to last
thousands of cycles. Examples include PLLs, ΣΔ converters, and magnetic storage
PRML channels. Simulation complexity is increasing at a blistering pace, and
verifying modern complex circuits completely at the transistor-level simply takes
too much time, even for ‘fast’ simulators such as reduced accuracy simulators or
those that employ parallel processing.
In a top-down design process, SPICE-level simulation is used judiciously in order to
get the benefits without incurring the costs. All blocks are simulated at the transistor
level in the context of the system in order to verify its functionality and interface.
Hot spots, or areas of special concern, are identified up front and simulated at the
transistor level. The performance of the circuit is verified by simulating just the
signal path or key pieces of it at the transistor level. Finally, if start-up behavior is a
concern, it is also simulated at the transistor level.

53

Page 53

53 BCTM 98 Tutorial on Circuit Simulation

Case Study: Disk Read Channel
Impossible to Simulate at Circuit Level

>10,000 transistors
2000 cycles needed to train adaptive circuits
Predicted simulation time > 1 month

Impossible to Simulate Blocks Individually
System involved complex feedback loop
Unable to predict closed-loop performance from
measurements on individual blocks
Difficult to verify blocks outside feedback loop

Mixed-Level Simulation Was Only Feasible Approach
2000 cycles with one block at circuit level overnight

Case Study: Disk Read Channel
Though this example is several years old, it is representative of the type of circuit
complexity that is becoming mainstream today. It is a PRML channel chip that it
difficult to simulate for two reasons. First, it is a relatively large circuit that involves
both analog and digital sections that are closely coupled. Second, the architecture
involves complex feedback loops and adaptive circuits and it takes many many
cycles for these circuits to settle. The combination of many transistors and many
cycles combines with the result being a simulation that is so expensive as to be
impractical. In this case, the expected simulation time was predicted to be greater
than a month.
The traditional approach to simulating a complex circuit like this would be to
simulate the blocks individually. Of course this verifies that the blocks work
individually, but not together. In addition, for this circuit it is difficult to verify the
blocks when outside the system, and it is difficult to predict the performance of the
system just knowing the performance of the individual blocks.
When the architecture was simulated at a high level with each block represented by
a pin-accurate behavioral model, the simulation time was less than 10 minutes.
Then, when a single block was run at the transistor level, the simulation ran
overnight. And even though the full system was never simulated at the transistor
level, it worked first time because this methodology does verify the blocks in the
context of the system and it verifies the interfaces between the blocks.

54

Page 54

54 BCTM 98 Tutorial on Circuit Simulation

Requirements for TDD and MLS

AHDL or MS-HDL
For block diagram simulation

High capacity circuit simulation
For mixed-level simulation

Logic (or timing) simulation
For mixed-signal simulation

Requirements for Top-Down Design and Mixed-Level Simulation
To support top-down design and mixed-level simulation of mixed-signal circuits
requires a simulator that provides an AHDL or MS-HDL, high capacity SPICE
simulation, and logic simulation.
An AHDL or MS-HDL is needed to support top-down design and mixed-level
simulation. Top-down design improves the designers’ ability to efficiently design
complex circuits while mixed-level simulation improves the designers’ ability to
verify complex circuits.
High capacity high performance SPICE simulation is required in order to support
mixed-level simulation. Without high capacity SPICE simulation the size of the
blocks simulated at transistor level can be limited, which forces an inappropriate or
inconvientent partitioning of the blocks.
And of course, logic simulation is required to support mixed-signal simulation.

55

Page 55

55 BCTM 98 Tutorial on Circuit Simulation

AHDLs & MS-HDLs

Allow easy modeling of blocks
Allow development of test benches
Industry standard A/MS-HDLs

Verilog-A and Verilog-AMS
VHDL-AMS

AHDLs and MS-HDLs
AHDLs and MS-HDLs are used to model many different types of systems, as well
as use it for applications such as complex test fixture modeling. They can also
provide some means of IP security, as companies can hand designs to outside
sources without disclosing their transistor level data.
Recently analog and mixed-signal extensions have been developed for both Verilog
and VHDL.

56

Page 56

56 BCTM 98 Tutorial on Circuit Simulation

Verilog-AMS
Mixed-Signal Verilog Simulation

Verilog-A approved by OVI in June 1996
Verilog-MS approved by OVI in August 1998

Digital Analog

System System

Gate Circuit

Verilog-AMS
Verilog-AVerilog

Verilog-AMS
Verilog-AMS is analog and mixed-signal extensions to Verilog-HDL. Verilog-HDL
is a digital event-driven simulator. As a first step, Verilog-A was developed as an
analog only language. It supports continuous time simulation. It is has a syntax
patterned after Verilog-HDL, but is completely distinct. Several commercial
versions of Verilog-A are currently available. Verilog-AMS is the merge of
Verilog-HDL and Verilog-A. It is a single language that supports the description of
both analog and digital circuits and behavior. Verilog-AMS also provides additional
capability not found in either Verilog-HDL or Verilog-A. In particular, Verilog-
AMS adds event-driven analog, automatic interface element insertion, and
automatic back-annotation of parasitics.

57

Page 57

57 BCTM 98 Tutorial on Circuit Simulation

VHDL-AMS
Mixed-Signal VHDL Simulation

No analog-only subset
IEEE 1076.1 (VHDL-AMS) approved summer 1998

Digital Analog

System System

Gate Circuit

VHDL-AMS
VHDL

VHDL-AMS
VHDL-AMS is analog and mixed-signal extensions to VHDL. VHDL is a digital
event-driven simulator. Unlike with Verilog, there is no analog-only subset for
VHDL. VHDL-AMS is the addition of analog capabilities to VHDL. It is a single
language that supports the description of both analog and digital circuits and
behavior. Unlike Verilog-AMS, VHDL-AMS does not provide automatic interface
element insertion or automatic back-annotation of parasitics.

58

Page 58

58 BCTM 98 Tutorial on Circuit Simulation

Introduction to Verilog-AMS
Event-driven kernel

Initial block
– Evaluate once

Always blocks
– Evaluate continuously

Supports blocking
Continuous-time kernel

Analog block
– Evaluate once per

timestep
No blocking

Declarations

Eval Once

Continuous
Eval

Eval Once per
Timestep

module sah (out, clk, in)
output out; input clk, in;
electrical out, in;
real held;

initial
held=0;

always
@(posedge clk)

held=V(in)

analog
V(out) <+ transition(held);

endmodule

Sample and Hold

Introduction to Verilog-AMS
Verilog-AMS descriptions support both event-driven and continuous-time behavior.
Event-driven behavior is given in the initial and always blocks. Initial blocks are
executed only once, whereas always blocks are evaluated repeatedly. Certain
statements in these blocks are blocking statements. That means that execution of the
block is suspended until the statement finishes.
Continuous-time behavior is given in the analog block. Analog blocks are evaluated
once per time-step. In the analog block, statements do not block.

59

Page 59

59 BCTM 98 Tutorial on Circuit Simulation

Signal-Flow and Conservative Models
Signal-Flow Model

Model relates potentials only
Useful for abstract models
– Top-level models in top-down design

Conservative Models
Model relates potentials and flows
Device modeling and loading at interfaces

Both are Compatible in Verilog-AMS
Freely interconnect
Written in same style

60

Page 60

60 BCTM 98 Tutorial on Circuit Simulation

Potentials and Flows

Conservative
Model

(potential & flow)

module resistor (a, b)
electrical a, b;
parameter r = 1;

analog
V(a,b) <+ r*I(a,b);

endmodule

Resistor

Signal-Flow
Model

(potential only)

module amp (out, in)
output out; input in;
voltage out, in;
parameter a = 1;

analog
V(out) <+ a*V(in);

endmodule

Amplifier

I(a,b)

a

b

+

–
V(a,b)

P
ot

en
tia

l

Flow

V(in) V(out)
+ +

––

P
ot

en
tia

l P
otential

61

Page 61

61 BCTM 98 Tutorial on Circuit Simulation

Analog Operators

Time integration, differentiation, & delay
Laplace & Z filters
Transition & slew filters

module vco (out, in)
voltage out, in;
parameter k = 1;
real phase;

analog begin
phase = idtmod(k*V(in), 0, 1);
V(out) <+ cos(2*M_PI*phase);

end
endmodule

VCO

Circular
Integrator

62

Page 62

62 BCTM 98 Tutorial on Circuit Simulation

Variables and Parameters

Variables retain their value
Can be used as state variables

Parameters support range limits
User specified upper and lower bounds
Inclusive or exclusive bounds
Bounds may be functions of other parameters

Types
Reals, Integers, Strings

63

Page 63

63 BCTM 98 Tutorial on Circuit Simulation

Events
Events

@ blocks
Blocks of code executed upon an event

Name Generates events at …
digital signal At signal transitions
cross() At analog signal crossings
timer() Periodically or at specific times
initial_step At beginning of simulation
final_step At end of simulation

64

Page 64

64 BCTM 98 Tutorial on Circuit Simulation

Example: Sampler
Sampler

Parameters
with Limits

Event
Block

State Variable

module sampler (out, in)
voltage out, in;
output out; input in;
parameter Tstart = 0;
parameter Tp = 1 from (0:inf);
parameter tt = T/10 from [0:T];
real hold;

analog begin
@(initial_step or timer(Tstart, T))

hold = V(in);

V(out) <+ transition(hold, 0, tt);
end

endmodule

65

Page 65

65 BCTM 98 Tutorial on Circuit Simulation

Mixed-Signal Simulation
Behavior MS Modeling

Can read analog signals in digital block
Can read digital signals in analog block
Generate events from analog signals using cross()

Structural MS Modeling
Analog/digital port type mismatches
– Automatically inserts user-specified interface module to

resolve mismatch
Signal-flow/conservative ports are compatible

66

Page 66

66 BCTM 98 Tutorial on Circuit Simulation

Other Capabilities

Multidisciplinary modeling
Modeling non-electrical systems
User defined disciplines

Ideal switch modeling

Switch Branch

module relay (a, b, closed)
electrical a, b;
input closed;

analog begin
@(closed) discontinuity(0);
if (closed) V(a,b) <+ 0;

end
endmodule

Relay

67

Page 67

67 BCTM 98 Tutorial on Circuit Simulation

Example: Phase/Frequency Detector
module pfd_cp (out, ref, vco)

electrical out;
output out; input ref, vco;
parameter Iout = 100u;
integer state;

always begin
@(posedge ref)

if (state > –1) state = state – 1;
@(posedge vco)

if (state < 1) state = state + 1;
end

analog
I(out) <+ transition(Iout*state);

endmodule

68

Page 68

68 BCTM 98 Tutorial on Circuit Simulation

Example: N-Bit Analog-to-Digital Converter
module adc (out, in, conv)

parameter bits=8, Vmax=1.0;
voltage in; input in, conv; output [0:bits-1] out;
real sample; integer I;

always begin
@(posedge conv) begin

sample = 2*V(in);
for (I=1; I <= bits; I=I+1) begin

out[I] = (sample > Vmax);
if (sample > Vmax)

sample = sample – Vmax;
sample = 2*sample;

end
end

end
endmodule

69

Page 69

69 BCTM 98 Tutorial on Circuit Simulation

Outline

Traditional SPICE Simulation
DC
AC and Noise
Transient
Fourier

Timing Simulation
AHDLs and MSHDLs
RF Simulation (tomorrow)

