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Abstract
A methodology is presented for predicting the jitter performance of a PLL using simula-
tion that is both accurate and efficient. The methodology begins by characterizing the 
noise behavior of the blocks that make up the PLL using transistor-level simulation. For 
each block, the jitter is extracted and provided as a parameter to behavioral models for 
inclusion in a high-level simulation of the entire PLL. This approach is efficient enough to 
be applied to complex systems, such as frequency synthesizers with large divide ratios or 
fractional-N synthesizers.

1. Introduction 
Phase-locked loops (PLL) are used in wireless receivers to implement a variety of 
functions, such as frequency synthesis, clock recovery, and demodulation. One of 
the major concerns in the design of PLLs is noise or jitter performance. Jitter from 
the PLL directly acts to degrade the noise floor of an analog receiver and the bit-
error rate of a digital receiver. 

Demir proposed an approach for simulating PLLs whereby a PLL is described using 
behavioral models simulated at a high level and described an efficient way to 
include jitter in these models [demir94, chang97]. He devised a powerful new simu-
lation algorithm that is capable of characterizing the circuit-level noise behavior of 
blocks that make up a PLL that is based on solving a set of nonlinear stochastic dif-
ferential equations [demir96a, demir96b]. Finally, he gave formulas that can be 
used to convert the results of the noise simulations on the individual blocks into val-
ues for the jitter parameters for the corresponding behavioral models [demir97]. 
This approach provides accurate and efficient prediction of PLL jitter behavior once 
the noise behavior of the blocks has been characterized. However, it requires the use 
of an experimental simulator that is not readily available.

This paper presents the relevant ideas of Demir, but bases the jitter extraction meth-
odology on the commercially available SpectreRF simulator [telichevesky96b, 
telichevesky96b] and presents behavioral models for Verilog-A, a standard, non-
proprietary analog behavioral modeling language [ovi96]. Both SpectreRF and Ver-



2

ilog-A are options to the Spectre circuit simulator, available from Cadence Design 

Systems.1

2. Frequency Synthesis
The block diagram of a PLL operating as a frequency synthesizer is shown in Figure

Figure 1 — The block diagram of a frequency synthesizer.
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1 [gardner79].2 It consists of a reference oscillator (OSC), a phase/frequency detec-
tor (PFD), a charge pump (CP), a loop filter (LF), a voltage-controlled oscillator 
(VCO), and three frequency dividers (FDs). The PLL is a feedback loop that, when 
in lock, forces ffb to be equal to fin. Given a reference frequency fref, the frequency at 

the output of the PLL is

fout
N
LM
-------- fref= . (1)

By choosing the frequency divide ratios and the reference frequency appropriately, 
the synthesizer generates an output signal at the desired frequency that inherits 
much of the stability of the reference frequency. In RF transceivers, this architecture 
is used to generate the local oscillator (LO) at a programmable frequency, which 
tunes the transceiver to the desired channel.

1. SpectreRF is currently the only commercial simulator that is suitable for characterizing the jit-
ter of the blocks that make up a PLL. SPICE and its descendants are not suitable because they only 
perform noise analysis about a DC operating point and so do not take into account the time-vary-
ing nature of these circuits. Harmonic balance simulators do perform noise analysis about a peri-
odic operating point, which is a critical prerequisite, but they have convergence, accuracy, and 
performance problems with blocks such as the PFD/CP and FD that are strongly nonlinear.
2. Frequency synthesis is used as an example, but the concepts presented are easily applied to 
other applications, such as clock recovery.
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2.1 Phase-Domain Noise Model
If the signals around the loop are interpreted as phase, then the small-signal noise 
behavior of the loop can be explored by linearizing the components and evaluating 
the transfer functions. Figure 2 shows this phase-domain model.

Figure 2 — Linear time-invariant phase-domain model of the synthesizer shown in Figure 1. 
The out-board frequency dividers are removed for simplicity. The φ’s represent various sources 
of noise.
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as the forward gain of the loop. Then the transfer function from the various noise 
sources to the output are

Tin
φout
φin
---------

Tfwd
1 Tfwd N⁄+
----------------------------

NTfwd
N Tfwd+
---------------------= = =

Tvco
φout
φvco
---------- N

N Tfwd+
---------------------= =

(3)

. (4)

And by inspection,

Tdiv
φout
φdiv
--------- Tin–= = (5)
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and

Tdet
φout
φdet
---------

2πTin
Kdet

--------------= = . (6)

On this last transfer function, we have simply referred φdet to the input by dividing 

through by the gain of the phase detector.

As ω ∞→ , Tfwd 0→  because of the VCO and the low-pass filter, and so 

Tin Tdet Tdiv, , 0→  and Tvco 1→ . At high frequencies, the noise of the PLL is that 

of the VCO.

As ω 0→ , Tfwd ∞→  because of the 1 jω⁄  term from the VCO. So at DC, 

Tin Tdiv, N→  and Tvco 0→ . At low frequencies, the noise of the PLL is contrib-

uted by the OSC, PFD/CP, and FD, and the noise from the VCO is diminished by 
the gain of the loop.

Consider further the asymptotic behavior of the loop and the VCO noise at low fre-
quencies ω 0→( ) . Because of phase noise in the VCO, φvco 1 ω⁄∼  (neglecting 

flicker noise). If the LF is chosen such that H ω( ) 1∼ , then Tfwd 1 ω⁄∼ , and noise 

contribution from the VCO to the output, Tfwdφvco , is finite and nonzero. If the LF 

is chosen such that H f( ) 1 ω⁄∼ , as it typically is when a true charge pump is 

employed, then Tfwd 1 ω2⁄∼  and the noise contribution to the output from the 

VCO goes to zero at low frequencies.

3. Jitter
Jitter is an uncertainty or randomness in the timing of events. In the case of our syn-
thesizer, the events of interest are the transitions in the output signal. One models 
jitter in a signal by starting with a noise-free signal x(t) and displacing time with a 
stochastic process j(t). The noisy signal becomes

xn t( ) x t j t( )+( )= . (7)

For simplicity, j is assumed to be a zero-mean Gaussian process, but it may be non-
stationary.

There are two types of jitter that are of interest in PLLs: phase modulation jitter, or 
PM jitter, and frequency modulation jitter, or FM jitter. Signals of the form (7)
exhibit PM jitter if j is a stationary process and FM jitter if j is a Wiener process. 
However, it is not necessary or desirable to be so restrictive. These restrictions will 
be loosened somewhat as we go on.
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3.1 PM Jitter
PM jitter is a non-accumulating jitter exhibited by driven systems. In the PLL, the 
PFD, CP, and FDs all exhibit PM jitter. In these components, an output event occurs 
as a direct result of, and some time after, an input event. PM jitter is a random fluc-
tuation in the delay between the input and the output events. It is modeled using (7), 
except j is replaced by nt,

xn t( ) x t nt t( )+( )= (8)

where nt differs from j in that it is constrained to be either a stationary process or a 

process with bounded variation. Thus, the variance is allowed to change with time, 
but that there is an upper bound V such that var nt t( ) t,( ) V<  for all t. This general-

ity is needed because we want to model systems where nt is cyclostationary. A sto-

chastic process is cyclostationary if its statistical moments, such as mean and 
variance, are periodic. If nt is white, then δx t( ) xn t( ) x t( )–=  is also white.

PM jitter is so named because it is a modulation of the phase of the signal by a ran-
dom process with zero mean and bounded variation. As a result, PM jitter is simply 
another way of describing PM noise.

3.2 FM Jitter
FM jitter is exhibited by systems, such as autonomous circuits, that generate a 
stream of spontaneous output transitions. In the PLL, the OSC and VCO exhibit FM 
jitter. FM jitter is characterized by a randomness in the time since the last output 
transition, thus the uncertainty of when a transition occurs accumulates with every 
transition. One can construct a signal that exhibits FM jitter from a process nt  with 

bounded variation using

xn t( ) x t nt τ( ) τd
0

t

∫+
⎝ ⎠
⎜ ⎟
⎛ ⎞

= . (9)

Thus, the phase difference between xn(t) and x(t) is a random walk that is not 

bounded. If nt is white and if x(t) is periodic with frequency fc, then δx(t) = xn(t) – 

x(t) is red in fm = f – fc. That is, it has a power spectral density that is proportional to 

1 fm
2⁄ .

FM jitter is so named because it is the modulation of the frequency of a signal by a 
random process with zero mean and bounded variation. As a result, FM jitter is sim-
ply another way of describing FM noise.
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FM jitter is strongly related to phase noise. Both are different ways of describing the 
same underlying phenomenon. In other words, all free running oscillators exhibit a 
behavior that is generically referred to as phase noise. Any noise in an autonomous 
system will cause the phase to drift freely because there is no reference signal with 
which to lock. When the phase fluctuations are measured in terms time deviation 
over a period, it is referred to as FM jitter. If it is measured in terms of noise signal 
amplitude as a function of frequency, it is referred to as phase noise.

3.3 A Metric for Jitter
Define J to be the standard deviation of the period of a single cycle,

J σ T( ) var T( )= = . (10)

Then J is a measure of jitter with units of time. This definition is valid for both PM 
and FM jitter, but does not distinguish between them.

3.4 Thresholds and Jitter 
In systems where signals are continuous valued, an event is usually defined as a sig-
nal crossing a threshold. The threshold crossings of a noiseless periodic signal, v(t), 
are precisely evenly spaced. However, when noise is added to the signal, vn(t) = v(t) 

+ nv(t), each threshold crossing is displaced slightly. Thus, a threshold converts 

additive noise to PM jitter.

The amount of displacement in time is determined by the amplitude of the noise sig-
nal, nv(t), and the slew rate of the periodic signal, v· t( ) , as the threshold is crossed. 

If the noise nv is stationary, the jitter is

J
var nv( )

v· tc( )
----------------------= (11)

where tc is the time of a threshold crossing.

Generally n is not stationary because it is being generated by a nonlinear circuit 

undergoing periodic oscillations.3 In this case, n is cyclostationary. It is only impor-

3. Another reason why n would not be stationary is if it is derived from a flicker noise source. 
Flicker noise is not explicitly considered in this paper. It is not conceptually difficult to include 
flicker noise, but flicker noise models tend to be expensive to implement in the time domain 
[demir96a].
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tant to know when the noisy periodic signal vn(t) crosses the threshold, so the statis-

tics of nv are only significant at the time when vn(t) crosses the threshold,

J
var nv tc,( )

v· tc( )
-----------------------------= . (12)

4. Model of PLL
The basic behavioral models for the blocks that make up a PLL are well known and 
so will not be discussed here in any depth [demir94, chang97]. Instead, only the 
techniques for adding jitter to the models is discussed.

4.1 Jitter Models 
Jitter is modeled in an AHDL by dithering the time at which events occur. This is 
efficient because it does not create any additional activity, rather it simply changes 
the time when existing activity occurs. Thus, models with jitter can run as effi-
ciently as those without.

4.2 Modeling PM jitter 
A feature of Verilog-A allows especially simple modeling of PM jitter. The transi-
tion() function, which is used to model signal transitions between discrete levels, 
provides a delay argument that can be dithered on every transition. The delay argu-
ment must not be negative, so a fixed delay that is greater than the maximum 
expected deviation of the jitter must be included. This approach is suitable for any 
model that generates discrete-valued outputs. It is used in the Verilog-A divider 
module shown in Listing 1, which models PM jitter with (8) where nt is a wide-

sense stationary white discrete-time Gaussian random process. It is also used in 
Listing 2, which models a simple PFD/CP.

4.3 Modeling FM jitter
The delay argument of the transition() function cannot be used to model FM jitter 
because of the cumulative nature of this type of jitter. When modeling a fixed fre-
quency oscillator, the timer() function is used as shown in Listing 3. At every output 
transition, the next transition is scheduled using the timer() function to be 

T N⁄ Jδ N⁄+  in the future, where δ is a unit-variance zero-mean random process 
and N is the number of output transitions per period. Typically, N = 2. 

A VCO is modeled by modifying a conventional VCO model. The input voltage is 
scaled by the VCO gain constant to convert it into frequency, and is then integrated 
to convert it to phase. Output transitions are generated when the phase passes –π/2
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Listing 1 — Verilog-A description of a frequency divider that models jitter. PM jitter is 
modeled by randomly dithering the delay argument of the transition() function on every output 
transition.

// Frequency Divider with Jitter

‘include "discipline.h" 
‘include "constants.h"

module divider (out, in);

input in; output out; electrical in, out;

parameter real Vlo=–1, Vhi=1; 
parameter integer ratio=2 from [2:inf); 
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger 

// dir=–1 for negative edge trigger 
parameter real tt=1n from (0:inf); 
parameter real td=0 from (0:inf); 
parameter real jitter=0 from [0:td/5); 
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer count, n, seed; real dT;

analog begin 
@(initial_step) seed = –311;

@(cross(V(in) – (Vhi + Vlo)/2, dir, ttol)) begin 
// count input transitions 
count = count + 1; 
if (count >= ratio) 

count = 0; 
// add jitter 
dT = jitter∗$dist_normal(seed,0,1); 

end

// generate the output 
n = (2∗count >= ratio); 
V(out) <+ transition(n ? Vhi : Vlo, td+dT,tt); 

end 
endmodule

and π/2. Jitter is added as a random perturbation of the frequency, with a correction 
applied to accurately convert the jitter specification from time to frequency. The 
dither is updated once per output transition. The final model given in Listing 4. This 
model can be easily modified to fit other needs. Converting it to a model that gener-
ates sine-waves rather than square waves simply requires replacing the last two lines 
with one that computes and outputs the sine of the phase. When doing so, you might 
consider reducing the number of jitter updates to one per period, in which case the 
factor of 1.414 should be changed to 1.
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Listing 2 — Verilog-A description of a simple PFD/CP that models jitter.

// Phase-Frequency Detector & Charge Pump

`include “discipline.h” 
`include “constants.h”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u; 
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger 

// dir=–1 for negative edge trigger 
parameter real tt=1n from (0:inf); 
parameter real td=0 from (0:inf); 
parameter real jitter=0 from [0:td/5); 
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer state, seed; 
real dt;

analog begin 
@(initial_step) seed = 716;

@(cross(V(ref), dir, ttol)) begin 
state = state – 1; 
dt = jitter ∗ $dist_normal(seed,0,1); 

end

@(cross(V(vco), dir, ttol)) begin 
state = state + 1; 
dt = jitter ∗ $dist_normal(seed,0,1); 

end

if (state > 1) state = 1; 
if (state < –1) state = –1;

        I(out) <+ transition(Iout ∗ state, td + dt, tt); 
end 
endmodule

This model does not model the finite response time of a real VCO. Those dynamics 
would be separated out and included as part of the model for the LF.

Listing 5 is a Verilog-A model for a quadrature VCO that exhibits FM jitter. It is an 
example of how to model an oscillator with multiple outputs so that the jitter on the 
outputs is properly correlated. 

4.4 Efficiency of the Models
Conceptually, a model that includes jitter should be just as efficient as one that does 
not because jitter does not increase the activity of the models, it only affects the tim-
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Listing 3 — Verilog-A description of a free-running fixed frequency oscillator. FM jitter is 
modeled by adding a random perturbation to the length of each period. This model also 
supports PM noise, which is useful if the PM noise from the PFD/CP and FD is included as part 
of the reference oscillator model rather than modeled separately.

// Fixed-Frequency Oscillator with Jitter

‘include "discipline.h" 
‘include "constants.h"

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01/freq from (0:inf); 
parameter real fmJitter=0 from [0:0.1/freq); 
parameter real pmJitter=0 from [0:0.1/freq);

integer n, fmSeed, pmSeed; 
real next, dT, dt;

analog begin 
@(initial_step) begin 

fmSeed = 286; 
pmSeed = –459; 
next = 0.5/freq + $realtime; 

end

@(timer(next + dt)) begin 
n = !n; 
dT = fmJitter∗$dist_normal(fmSeed,0,1); 
dt = pmJitter∗$dist_normal(pmSeed,0,1); 
next = next + 0.5/freq + 0.707∗dT; 

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt); 
end 
endmodule

ing of particular events. However, if jitter causes two events that would normally 
occur at the same time to be displaced so that they are no longer coincident, then a 
circuit simulator will have to use more time points to resolve the distinct events and 
so will run more slowly. For this reason, it is desirable to combine jitter sources to 
the degree possible. 

From the discussion of the phase-domain model of the synthesizer, it is clear that 
one can easily combine the output-referred noise of the FD and the input-referred 
noise of the PFD/CP with the output noise of OSC. The fixed-frequency oscillator 
model given in Listing 3 supports two jitter parameters. The fmJitter parameter is 
used to model the FM jitter of the reference oscillator, and the pmJitter parameter is 
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Listing 4 — Verilog-A description of a VCO model that includes jitter.

// Voltage Controlled Oscillator with Jitter

‘include "discipline.h" 
‘include "constants.h"

module VCO (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0; 
parameter real Vmax=Vmin+1 from (Vmin:inf); 
parameter real Fmin=1 from (0:inf); 
parameter real Fmax=2∗Fmin from (Fmin:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real tt=0.01/Fmax from (0:inf); 
parameter real jitter=0 from [0:0.25/Fmax); 
parameter real ttol=1u/Fmax from (0:1/Fmax);

real freq, phase, dT, delta; 
integer n, seed;

analog begin 
@(initial_step) seed = –561;

// compute the freq from the input voltage  
freq = (V(in) – Vmin)∗(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional) 
if (freq > Fmax) freq = Fmax; 
if (freq < Fmin) freq = Fmin;

// add the phase noise 
delta = dT∗freq; 
delta = delta/(1 – delta); 
freq = freq∗(1 + delta);

// phase is the integral of the freq modulo 2π 
phase = 2∗‘M_PI∗idtmod(freq, 0.0, 1, –0.5);

// update jitter twice per period 
@(cross(phase + ‘M_PI/2, +1, ttol) or cross(phase – ‘M_PI/2, +1, ttol)) begin 

dT = 1.414∗jitter∗$dist_normal(seed,0, 1); 
// 1.414=sqrt(N) where N=2 jitter updates/period 

end

// generate the output 
n = (phase >= –‘M_PI/2) && (phase < ‘M_PI/2); 
V(out) <+ transition(n ? Vhi : Vlo, 0, tt); 

end 
endmodule

used to model the PM jitter of the FD and PFD/CP. PM jitter is modeled in the oscil-
lator without using a nonzero delay in the transition function. This is a more effi-
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Listing 5 — Verilog-A description of a quadrature VCO model that includes jitter.

// Quadrature Differential VCO with Jitter

‘include “discipline.h” 
‘include “constants.h”

module quadVCO (PIout, NIout, PQout, NQout, Pin, Nin);

electrical PIout, NIout, PQout, NQout, Pin, Nin; 
output PIout, NIout, PQout, NQout; input  Pin, Nin;

parameter real Vmin=0; 
parameter real Vmax=Vmin+1 from (Vmin:inf); 
parameter real Vlo=–1, Vhi=1; 
parameter real Fmin=1 from (0:inf); 
parameter real Fmax=2*Fmin from (Fmin:inf); 
parameter real jitter=0 from [0:0.25/Fmax), ttol=1u/Fmax from (0:1/Fmax); 
parameter real tt=0.01/Fmax;

real freq, phase, dT, delta; 
integer i, q, seed; 
analog begin 

@(initial_step) seed = 133;

// compute the freq from the input voltage 
freq = (V(Pin,Nin) - Vmin) * (Fmax - Fmin) / (Vmax - Vmin) + Fmin;

// bound the frequency (this is optional) 
if (freq > Fmax) freq = Fmax; 
if (freq < Fmin) freq = Fmin;

// add the phase noise 
delta = dT∗freq; 
delta = delta/(1 – delta); 
freq = freq∗(1 + delta);

// phase is the integral of the freq modulo 2π 
phase = 2*‘M_PI*idtmod(freq, 0.0, 1, –0.5);

// update jitter where phase crosses π/2 
@(cross(phase – 3*‘M_PI/4, +1, ttol) or cross(phase – ‘M_PI/4, +1, ttol) or 

cross(phase + ‘M_PI/4, +1, ttol) or cross(phase + 3*‘M_PI/4, +1, ttol)) 
dT = 2*jitter*$dist_normal(seed,0,1); // 2=sqrt(N), N=4 jitter updates per period

// generate the I and Q outputs 
i = (phase >= –3*‘M_PI/4) && (phase < ‘M_PI/4); 
q = (phase >= –‘M_PI/4) && (phase < 3*‘M_PI/4); 
V(PIout) <+ transition(i ? Vhi : Vlo, 0, tt); 
V(NIout) <+ transition(i ? Vlo : Vhi, 0, tt); 
V(PQout) <+ transition(q ? Vhi : Vlo, 0, tt); 
V(NQout) <+ transition(q ? Vlo : Vhi, 0, tt); 

end 
endmodule
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cient approach because it avoids generating two unnecessary events per period. To 
get full benefit from this optimization, set td in the FD and PFD/CP to zero. 

If the output of the VCO is not used to drive circuitry external to the synthesizer, 
then it is usually possible to include the frequency division aspect of the FD as part 
of the VCO by simply adjusting the VCO gain. Recall that the PM jitter of the FD 
has already been included as part of OSC. The jitter at the output of the modified 
VCO is the same as jitter at the output of the unmodified VCO. If the divide ratio of 
FD is large, the simulation runs much faster because the high VCO output fre-
quency is never generated.

To make the HDL models even faster, rewrite them in either Verilog-HDL or 
VHDL. Be sure to set the time resolution to be sufficiently small to prevent the dis-
crete nature of time in these simulators from adding an appreciable amount of jitter.

5. Characterizing Jitter 
The switching nature of the blocks in a PLL prevents use of the conventional noise 
analysis available from SPICE to characterize the noise of any of the blocks in a PLL 
with the possible exception of the LF. The SPICE noise analysis operates by lineariz-
ing the block about a DC operating point, which is not sufficient when the block 
exhibits switching behavior. SpectreRF and the simulator developed by Demir both 
linearize the circuit about a time-varying operating point and compute the noise at 
the output of the block while taking into account both the effect of the time-varying 
operating point on the bias-dependent noise sources and the time-varying nature of 
the transfer function from the noise source to the output. They differ in that Spectr-
eRF is constrained to operate on periodic circuits. In addition, SpectreRF outputs 
noise as a function of frequency averaged over a period, while Demir’s simulator 
computes the output noise as a function of time and integrated over all frequencies.

Both simulators linearize about the operating point and compute the noise as a post 
processing step. Thus, the noise does not affect the operating point calculation and 
so the simulation will not be accurate if the noise is large enough to affect the large-
signal behavior of the circuit. Generally, the amplitude of the noise sources is quite 
small and so this is not a concern. However, in thresholding circuits, the noise 
present when the signal crosses the threshold gets amplified tremendously. When 
cascading several thresholding stages, the noise can be amplified to such a great 
degree that it does change the large signal behavior, making the simulation inaccu-
rate. This occurs in a FD implemented as a ripple counter with a large number of 
stages. In such cases it is necessary to break the circuit down and only characterize 
the jitter of one or two stages at a time. The maximum number of stages that can be 
characterized together is greater if the jitter is small relative to the transition time of 
the circuit, as shown in Figure 3. 
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Figure 3 — The figures on the left show a reference signal, and one offset due to jitter. In both 
the top and bottom figures, the offset is the same (they have the same amount of jitter). The top 
signals have a smaller transition time than those on the bottom. The figures on the right show 
the difference between the reference signal and the offset signal. For the same amount of jitter, 
the maximum difference is larger when the transition time is smaller. If the difference is large 
enough to cause a nonlinear response, the noise simulations will not be accurate. This problem 
becomes significant when the jitter is about the same size of the transition time or larger. It 
limits the number of cascaded thresholding stages that can be characterized at one time.
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5.1 Characterizing PM Jitter 
SpectreRF’s PNoise analysis computes the power spectral density of the noise at the 
output of the block. If this noise is stationary (as opposed to cyclostationary), it is a 
simple matter to apply (11) to calculate the jitter. Simply choose a representative set 
of periodic inputs to the block and use SpectreRF’s Periodic Steady State (PSS) 
analysis to compute the steady-state response. This computes the periodic operating 
point about which the noise analysis is performed. It also gives v· tc( ) , the slew rate 

of the output at threshold crossing. Apply SpectreRF’s PNoise analysis to compute 
the noise power at the output as a function of frequency. Choose the frequency 
range of the analysis so that the total noise at frequencies outside the range is negli-
gible. Thus, the noise should be at least 40 dB down at the highest frequency simu-
lated. Finally, integrate the noise power over frequency and apply Parseval’s 
Theorem to determine

var nv( ) nv
2 f( )df∫= , (13)
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the total noise power [gray93], and apply (11).

When the noise is cyclostationary the same procedure is used, except a gating func-
tion is applied to the output so that only the noise that occurs near the threshold 
crossing is considered in the jitter calculation. SpectreRF’s PNoise analysis com-
putes the time-average of the noise at the output, so it is not possible to post-process 
the PNoise results to determine the noise at the time of the threshold crossing. 
Rather, a limiter is added to the output of the block and SpectreRF computes the 
noise at the output of the limiter. The limiter, shown in Figure

Figure 4 — When the device-under-test (DUT) exhibits cyclostationary noise, a limiter is 
applied to output of driven block to suppress noise present outside of the active transitions. v(t)
is the output of the block, vl(t) is the output of the limiter, and nl(t) is the noise at the output of 
the limiter. Noise on a waveform is denoted by using a thick trace. The output of the limiter is 
only noisy when it is inside its active region (when it is not limiting).
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 4, is designed to satu-

rate when the output of the block is outside a certain range to prevent any noise at 
the output from being considered except the noise present near when the signal 
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crosses the threshold. The limiter is shown in Listing 6. 

Listing 6 — Verilog-A limiter used for characterizing PM jitter in circuits with binary outputs.

// Simple Limiter

‘include "discipline.h" 
‘include "constants.h"

module limiter (out, in);

output out; input in; electrical out, in;

parameter real Vlo=–1, Vhi=1;

analog begin 
// Place time-point at threshold crossings 
@(cross(V(in) – Vlo) or cross(V(in) – Vhi));

// Determine the output 
if (V(in) < Vlo) 

V(out) <+ Vlo; 
else if (V(in) > Vhi) 

V(out) <+ Vhi; 
else 

V(out) <+ V(in); 
end 
endmodule

The range of the limiter, VL

and VH, is chosen such that the noise and the slew rate is approximately constant 

while the limiter is active. When running PNoise analysis, assure that the maxside-
bands parameter is at least ten times larger than T/tti for any i. This assures that the 

narrow noise pulses are adequately resolved by the PNoise analysis. Jitter is inde-
pendent of T, so to reduce the number of sidebands needed, use T as small as possi-
ble. If maxsidebands is not set sufficiently large, then the extracted value of jitter 
will increase as T decreases.

If we assume that the amplitude of the noise during each transition is the same, then 

var n tc,( )
nl
2〈 〉T

tt1 tt2+
------------------= (14)

where nl
2〈 〉  is the time average of the noise power at the output of the limiter. Spec-

treRF computes the power spectral density of the noise at the output of the limiter, 
and by Parseval’s theorem, 

nl
2〈 〉 nl

2 f( )df∫= . (15)
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If we further assume that tt = tt1 = tt2, then 

v· tc( )
VH VL–

tt
--------------------≈ . (16)

And from (12) 

J
var n tc,( )

v· tc( )
---------------------------

nl
2〈 〉T
Ntt

---------------
tt

VH VL–
--------------------≈= , (17)

J
nl
2〈 〉Ttt N⁄

VH VL–
-------------------------------≈ , (18)

where N = 2 is the number of transitions that occurred during the period.

This general methodology for characterizing the PM jitter of driven blocks with 
binary outputs is extended or clarified for important special cases in the next few 
sections.

5.1.1 PM jitter of the PFD/CP

The PFD and CP work together to generate a three-level discrete-valued signal (it 
takes the values –1, 0, and +1) whose time average is used as the loop error signal. 
The average of this signal controls the VCO after it has been extracted by the LF.

There are two aspects of the PFD/CP that differ from the assumptions made above. 
First, the output of the CP is a current, so the limiter and the equations given in the 
previous section need to be adapted. Second, the output of the CP has three distinct 
levels rather than the two assumed above. Thus, the CP has a ternary output rather 
than a binary output.

If it is necessary to apply a gating function, care must be taken because of the ter-
nary nature of the output. A simple limiter would allow the noise associated with 
the middle value to pass. So the simple limiter should be replaced with a dead-band 
limiter. This is a limiter with a dead band in the center of its input range. The dead 
band rejects noise about the equilibrium point associated with the middle of the 
three values. 

5.1.2 PM Jitter of a FD

With ripple counters, one can only characterize a few stages at a time because of the 
issue shown in Figure 3. Thus, a long ripple counter chain has to be broken into 
smaller chains, and characterized individually. The total jitter for the ripple counter 
is then computed by taking the square-root of the sum of the square of the jitter on 
each stage.
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Unlike in ripple counters, jitter does not accumulate with synchronous counters. Jit-
ter in a synchronous counter is independent of the number of stages. Rather, jitter of 
a synchronous counter is the jitter of its clock along with the jitter of the last stage.

The input to counters are generally edge sensitive, and so are only affected by jitter 
on either the positive-going or the negative-going clock transitions, but not both. 
However, this should not affect the way in which blocks are characterized as long as 
the behavioral models for the dividers also have edge-sensitive inputs. Then the 
behavioral model of the dividers only react to jitter on the proper edge and ignore 
jitter on the other edge.

5.1.3 Differential Outputs

When a circuit has multiple outputs, such as in the case where a circuit has differen-
tial outputs, there may be correlation between the jitter on the various outputs. Cur-
rently SpectreRF does not compute the correlation in noise between two outputs, 
however in some cases it is possible to use physical reasoning to determine how to 
model the correlation. Consider a synchronous counter with differential outputs. 
Clearly, the jitter that derives from the clock will be perfectly correlated between 
the two outputs. The jitter from the last stage will be partially correlated, but again, 
some estimate of the degree of correlation is often possible if you understand the 
implementation of the last stage.

5.2 Characterizing FM Jitter
The noise of a free-running oscillator is dominated by phase noise, which is a ran-
dom shifting of the frequency, and hence the phase, of the oscillation signal over 
time. The phase of an oscillator is subject to this variation because it is free running: 
there is no drive signal with which to lock and so no synchronization between the 
signals generated by the oscillator and any reference signal. Indeed, it is the func-
tion of the feedback in the PLL to provide this synchronization in order to reduce 
the phase noise of the VCO.

Phase noise and FM jitter are different ways of describing the same underlying phe-
nomenon, and so there is a direct conversion between phase noise and FM jitter. 
There is no need to invoke the use of thresholds or gating functions in order to make 
the conversion.

SpectreRF’s PNoise analysis is used to compute the phase noise of either the OSC 
or the combination of the LF and VCO. The power spectral density of the phase of 
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phase noise is proportional to 1 fm
2⁄  where fm = f – fc is the frequency offset from 

the carrier (this ignores any flicker or 1/f noise). Define a such that 

Sφ fm( ) a
2πfc( )2

2πfm( )2
--------------------= . (19)

Then, the phase noise is completely characterized once a and fc are known. Typi-

cally, phase noise is measured as L(fm), the ratio of the noise power in a 1 Hz band-

width at fm to the carrier signal power. In the region where the noise at the fc fm±  

sidebands are correlated [vendelin90],

Sφ fm( ) 2L fm( )= . (20)

This occurs at frequencies close to fc where the phase noise dominates over additive 

noise. Thus, 

a 2L fm( )
fm
2

fc
2

-----= . (21)

a is the noise added per period T, and so the jitter is [demir97]

J aT= . (22)

6. Example 
These ideas were applied to model and simulate a PLL acting as a frequency syn-
thesizer that multiplies the reference frequency by a factor of roughly 5000 (N = 
5000). The FD was included into the VCO, which suppressed the high frequency 
signal at the output of the VCO. The results are shown in Figure 5. The simulation 
took 15 minutes for 250k time-points on a Sun Sparc 5. The use of a large number 
was motivated by the desire to have good resolution of the noise at low frequencies.

The low-pass filter LF blocks all high frequency signals from reaching the VCO, so 
the noise of the phase lock loop at high frequencies is the same as the noise gener-
ated by the open-loop VCO alone. At low frequencies, the loop gain act to stabilize 
the phase of the VCO, and the noise of the PLL is contributed by OSC, PFD/CP, 
FD. There is some contribution from the VCO, but it is diminished by the gain of 
the loop. The measured results agree qualitatively with the these expected results.

7. Conclusion 
A methodology for modeling and simulating the jitter performance of phase-locked 
loops was presented. The simulation is done at the behavioral level, and so is effi-
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Figure 5 — SpectreRF results for the phase noise of the open-loop VCO, and Spectre results 
for the closed-loop PLL modeled in Verilog-A. In this case, the phase noise of the VCO 
dominates as a source of jitter in the PLL, but that jitter is reduced at low frequencies by the 
feedback of the loop.
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cient enough to be applied in a wide variety of applications. The behavioral models 
are calibrated from circuit-level noise simulations, and so the high-level simulations 
are accurate. Behavioral models were presented in the Verilog-A language, however 
these same ideas can be used to develop behavioral models in purely event-driven 
languages such as Verilog-HDL and VHDL.

This methodology is flexible enough to be used in a broad range of applications 
where jitter is important. Examples include, clock generation and recovery, sam-
pling systems, over-sampled ADCs, digital modulation and demodulation systems, 
fractional-N frequency synthesis, and disk read channels.
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