
1

Modeling and Simulation of Jitter
in Phase-Locked Loops

Ken Kundert

Cadence Design Systems
San Jose, California, USA

Abstract
A methodology is presented for predicting the jitter performance of a PLL using simula-
tion that is both accurate and efficient. The methodology begins by characterizing the
noise behavior of the blocks that make up the PLL using transistor-level simulation. For
each block, the jitter is extracted and provided as a parameter to behavioral models for
inclusion in a high-level simulation of the entire PLL. This approach is efficient enough to
be applied to complex systems, such as frequency synthesizers with large divide ratios or
fractional-N synthesizers.

1. Introduction
Phase-locked loops (PLL) are used in wireless receivers to implement a variety of
functions, such as frequency synthesis, clock recovery, and demodulation. One of
the major concerns in the design of PLLs is noise or jitter performance. Jitter from
the PLL directly acts to degrade the noise floor of an analog receiver and the bit-
error rate of a digital receiver.

Demir proposed an approach for simulating PLLs whereby a PLL is described using
behavioral models simulated at a high level and described an efficient way to
include jitter in these models [demir94, chang97]. He devised a powerful new simu-
lation algorithm that is capable of characterizing the circuit-level noise behavior of
blocks that make up a PLL that is based on solving a set of nonlinear stochastic dif-
ferential equations [demir96a, demir96b]. Finally, he gave formulas that can be
used to convert the results of the noise simulations on the individual blocks into val-
ues for the jitter parameters for the corresponding behavioral models [demir97].
This approach provides accurate and efficient prediction of PLL jitter behavior once
the noise behavior of the blocks has been characterized. However, it requires the use
of an experimental simulator that is not readily available.

This paper presents the relevant ideas of Demir, but bases the jitter extraction meth-
odology on the commercially available SpectreRF simulator [telichevesky96b,
telichevesky96b] and presents behavioral models for Verilog-A, a standard, non-
proprietary analog behavioral modeling language [ovi96]. Both SpectreRF and Ver-

2

ilog-A are options to the Spectre circuit simulator, available from Cadence Design

Systems.1

2. Frequency Synthesis
The block diagram of a PLL operating as a frequency synthesizer is shown in Figure

Figure 1 — The block diagram of a frequency synthesizer.

PFD CP LF

VCO

FD
1/L

OSC FD
1/M

FD
1/N

f
ref

f
in

f
fb

f
vco

out
f

1 [gardner79].2 It consists of a reference oscillator (OSC), a phase/frequency detec-
tor (PFD), a charge pump (CP), a loop filter (LF), a voltage-controlled oscillator
(VCO), and three frequency dividers (FDs). The PLL is a feedback loop that, when
in lock, forces ffb to be equal to fin. Given a reference frequency fref, the frequency at

the output of the PLL is

fout
N
LM
-------- fref= . (1)

By choosing the frequency divide ratios and the reference frequency appropriately,
the synthesizer generates an output signal at the desired frequency that inherits
much of the stability of the reference frequency. In RF transceivers, this architecture
is used to generate the local oscillator (LO) at a programmable frequency, which
tunes the transceiver to the desired channel.

1. SpectreRF is currently the only commercial simulator that is suitable for characterizing the jit-
ter of the blocks that make up a PLL. SPICE and its descendants are not suitable because they only
perform noise analysis about a DC operating point and so do not take into account the time-vary-
ing nature of these circuits. Harmonic balance simulators do perform noise analysis about a peri-
odic operating point, which is a critical prerequisite, but they have convergence, accuracy, and
performance problems with blocks such as the PFD/CP and FD that are strongly nonlinear.
2. Frequency synthesis is used as an example, but the concepts presented are easily applied to
other applications, such as clock recovery.

3

2.1 Phase-Domain Noise Model
If the signals around the loop are interpreted as phase, then the small-signal noise
behavior of the loop can be explored by linearizing the components and evaluating
the transfer functions. Figure 2 shows this phase-domain model.

Figure 2 — Linear time-invariant phase-domain model of the synthesizer shown in Figure 1.
The out-board frequency dividers are removed for simplicity. The φ’s represent various sources
of noise.

H ω()
2πKvco
jω

LF VCO

Kdet
2π

1
N

Σ

PFD/CP

FD

ΣΣ

Σ

φdiv

φin

φvco

φout

φdet

–
+

Define

Tfwd
Kdet
2π

----------H ω()
2πKvco
jω

KdetKvcoH ω()

jω
------------------------------------= = (2)

as the forward gain of the loop. Then the transfer function from the various noise
sources to the output are

Tin
φout
φin

Tfwd
1 Tfwd N⁄+

NTfwd
N Tfwd+
---------------------= = =

Tvco
φout
φvco
---------- N

N Tfwd+
---------------------= =

(3)

. (4)

And by inspection,

Tdiv
φout
φdiv
--------- Tin–= = (5)

4

and

Tdet
φout
φdet

2πTin
Kdet

--------------= = . (6)

On this last transfer function, we have simply referred φdet to the input by dividing

through by the gain of the phase detector.

As ω ∞→ , Tfwd 0→ because of the VCO and the low-pass filter, and so

Tin Tdet Tdiv, , 0→ and Tvco 1→ . At high frequencies, the noise of the PLL is that

of the VCO.

As ω 0→ , Tfwd ∞→ because of the 1 jω⁄ term from the VCO. So at DC,

Tin Tdiv, N→ and Tvco 0→ . At low frequencies, the noise of the PLL is contrib-

uted by the OSC, PFD/CP, and FD, and the noise from the VCO is diminished by
the gain of the loop.

Consider further the asymptotic behavior of the loop and the VCO noise at low fre-
quencies ω 0→() . Because of phase noise in the VCO, φvco 1 ω⁄∼ (neglecting

flicker noise). If the LF is chosen such that H ω() 1∼ , then Tfwd 1 ω⁄∼ , and noise

contribution from the VCO to the output, Tfwdφvco , is finite and nonzero. If the LF

is chosen such that H f() 1 ω⁄∼ , as it typically is when a true charge pump is

employed, then Tfwd 1 ω2⁄∼ and the noise contribution to the output from the

VCO goes to zero at low frequencies.

3. Jitter
Jitter is an uncertainty or randomness in the timing of events. In the case of our syn-
thesizer, the events of interest are the transitions in the output signal. One models
jitter in a signal by starting with a noise-free signal x(t) and displacing time with a
stochastic process j(t). The noisy signal becomes

xn t() x t j t()+()= . (7)

For simplicity, j is assumed to be a zero-mean Gaussian process, but it may be non-
stationary.

There are two types of jitter that are of interest in PLLs: phase modulation jitter, or
PM jitter, and frequency modulation jitter, or FM jitter. Signals of the form (7)
exhibit PM jitter if j is a stationary process and FM jitter if j is a Wiener process.
However, it is not necessary or desirable to be so restrictive. These restrictions will
be loosened somewhat as we go on.

5

3.1 PM Jitter
PM jitter is a non-accumulating jitter exhibited by driven systems. In the PLL, the
PFD, CP, and FDs all exhibit PM jitter. In these components, an output event occurs
as a direct result of, and some time after, an input event. PM jitter is a random fluc-
tuation in the delay between the input and the output events. It is modeled using (7),
except j is replaced by nt,

xn t() x t nt t()+()= (8)

where nt differs from j in that it is constrained to be either a stationary process or a

process with bounded variation. Thus, the variance is allowed to change with time,
but that there is an upper bound V such that var nt t() t,() V< for all t. This general-

ity is needed because we want to model systems where nt is cyclostationary. A sto-

chastic process is cyclostationary if its statistical moments, such as mean and
variance, are periodic. If nt is white, then δx t() xn t() x t()–= is also white.

PM jitter is so named because it is a modulation of the phase of the signal by a ran-
dom process with zero mean and bounded variation. As a result, PM jitter is simply
another way of describing PM noise.

3.2 FM Jitter
FM jitter is exhibited by systems, such as autonomous circuits, that generate a
stream of spontaneous output transitions. In the PLL, the OSC and VCO exhibit FM
jitter. FM jitter is characterized by a randomness in the time since the last output
transition, thus the uncertainty of when a transition occurs accumulates with every
transition. One can construct a signal that exhibits FM jitter from a process nt with

bounded variation using

xn t() x t nt τ() τd
0

t

∫+
⎝ ⎠
⎜ ⎟
⎛ ⎞

= . (9)

Thus, the phase difference between xn(t) and x(t) is a random walk that is not

bounded. If nt is white and if x(t) is periodic with frequency fc, then δx(t) = xn(t) –

x(t) is red in fm = f – fc. That is, it has a power spectral density that is proportional to

1 fm
2⁄ .

FM jitter is so named because it is the modulation of the frequency of a signal by a
random process with zero mean and bounded variation. As a result, FM jitter is sim-
ply another way of describing FM noise.

6

FM jitter is strongly related to phase noise. Both are different ways of describing the
same underlying phenomenon. In other words, all free running oscillators exhibit a
behavior that is generically referred to as phase noise. Any noise in an autonomous
system will cause the phase to drift freely because there is no reference signal with
which to lock. When the phase fluctuations are measured in terms time deviation
over a period, it is referred to as FM jitter. If it is measured in terms of noise signal
amplitude as a function of frequency, it is referred to as phase noise.

3.3 A Metric for Jitter
Define J to be the standard deviation of the period of a single cycle,

J σ T() var T()= = . (10)

Then J is a measure of jitter with units of time. This definition is valid for both PM
and FM jitter, but does not distinguish between them.

3.4 Thresholds and Jitter
In systems where signals are continuous valued, an event is usually defined as a sig-
nal crossing a threshold. The threshold crossings of a noiseless periodic signal, v(t),
are precisely evenly spaced. However, when noise is added to the signal, vn(t) = v(t)

+ nv(t), each threshold crossing is displaced slightly. Thus, a threshold converts

additive noise to PM jitter.

The amount of displacement in time is determined by the amplitude of the noise sig-
nal, nv(t), and the slew rate of the periodic signal, v· t() , as the threshold is crossed.

If the noise nv is stationary, the jitter is

J
var nv()

v· tc()
----------------------= (11)

where tc is the time of a threshold crossing.

Generally n is not stationary because it is being generated by a nonlinear circuit

undergoing periodic oscillations.3 In this case, n is cyclostationary. It is only impor-

3. Another reason why n would not be stationary is if it is derived from a flicker noise source.
Flicker noise is not explicitly considered in this paper. It is not conceptually difficult to include
flicker noise, but flicker noise models tend to be expensive to implement in the time domain
[demir96a].

7

tant to know when the noisy periodic signal vn(t) crosses the threshold, so the statis-

tics of nv are only significant at the time when vn(t) crosses the threshold,

J
var nv tc,()

v· tc()
-----------------------------= . (12)

4. Model of PLL
The basic behavioral models for the blocks that make up a PLL are well known and
so will not be discussed here in any depth [demir94, chang97]. Instead, only the
techniques for adding jitter to the models is discussed.

4.1 Jitter Models
Jitter is modeled in an AHDL by dithering the time at which events occur. This is
efficient because it does not create any additional activity, rather it simply changes
the time when existing activity occurs. Thus, models with jitter can run as effi-
ciently as those without.

4.2 Modeling PM jitter
A feature of Verilog-A allows especially simple modeling of PM jitter. The transi-
tion() function, which is used to model signal transitions between discrete levels,
provides a delay argument that can be dithered on every transition. The delay argu-
ment must not be negative, so a fixed delay that is greater than the maximum
expected deviation of the jitter must be included. This approach is suitable for any
model that generates discrete-valued outputs. It is used in the Verilog-A divider
module shown in Listing 1, which models PM jitter with (8) where nt is a wide-

sense stationary white discrete-time Gaussian random process. It is also used in
Listing 2, which models a simple PFD/CP.

4.3 Modeling FM jitter
The delay argument of the transition() function cannot be used to model FM jitter
because of the cumulative nature of this type of jitter. When modeling a fixed fre-
quency oscillator, the timer() function is used as shown in Listing 3. At every output
transition, the next transition is scheduled using the timer() function to be

T N⁄ Jδ N⁄+ in the future, where δ is a unit-variance zero-mean random process
and N is the number of output transitions per period. Typically, N = 2.

A VCO is modeled by modifying a conventional VCO model. The input voltage is
scaled by the VCO gain constant to convert it into frequency, and is then integrated
to convert it to phase. Output transitions are generated when the phase passes –π/2

8

Listing 1 — Verilog-A description of a frequency divider that models jitter. PM jitter is
modeled by randomly dithering the delay argument of the transition() function on every output
transition.

// Frequency Divider with Jitter

‘include "discipline.h"
‘include "constants.h"

module divider (out, in);

input in; output out; electrical in, out;

parameter real Vlo=–1, Vhi=1;
parameter integer ratio=2 from [2:inf);
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger

// dir=–1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5);
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer count, n, seed; real dT;

analog begin
@(initial_step) seed = –311;

@(cross(V(in) – (Vhi + Vlo)/2, dir, ttol)) begin
// count input transitions
count = count + 1;
if (count >= ratio)

count = 0;
// add jitter
dT = jitter∗$dist_normal(seed,0,1);

end

// generate the output
n = (2∗count >= ratio);
V(out) <+ transition(n ? Vhi : Vlo, td+dT,tt);

end
endmodule

and π/2. Jitter is added as a random perturbation of the frequency, with a correction
applied to accurately convert the jitter specification from time to frequency. The
dither is updated once per output transition. The final model given in Listing 4. This
model can be easily modified to fit other needs. Converting it to a model that gener-
ates sine-waves rather than square waves simply requires replacing the last two lines
with one that computes and outputs the sine of the phase. When doing so, you might
consider reducing the number of jitter updates to one per period, in which case the
factor of 1.414 should be changed to 1.

9

Listing 2 — Verilog-A description of a simple PFD/CP that models jitter.

// Phase-Frequency Detector & Charge Pump

`include “discipline.h”
`include “constants.h”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u;
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger

// dir=–1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5);
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer state, seed;
real dt;

analog begin
@(initial_step) seed = 716;

@(cross(V(ref), dir, ttol)) begin
state = state – 1;
dt = jitter ∗ $dist_normal(seed,0,1);

end

@(cross(V(vco), dir, ttol)) begin
state = state + 1;
dt = jitter ∗ $dist_normal(seed,0,1);

end

if (state > 1) state = 1;
if (state < –1) state = –1;

 I(out) <+ transition(Iout ∗ state, td + dt, tt);
end
endmodule

This model does not model the finite response time of a real VCO. Those dynamics
would be separated out and included as part of the model for the LF.

Listing 5 is a Verilog-A model for a quadrature VCO that exhibits FM jitter. It is an
example of how to model an oscillator with multiple outputs so that the jitter on the
outputs is properly correlated.

4.4 Efficiency of the Models
Conceptually, a model that includes jitter should be just as efficient as one that does
not because jitter does not increase the activity of the models, it only affects the tim-

10
Listing 3 — Verilog-A description of a free-running fixed frequency oscillator. FM jitter is
modeled by adding a random perturbation to the length of each period. This model also
supports PM noise, which is useful if the PM noise from the PFD/CP and FD is included as part
of the reference oscillator model rather than modeled separately.

// Fixed-Frequency Oscillator with Jitter

‘include "discipline.h"
‘include "constants.h"

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01/freq from (0:inf);
parameter real fmJitter=0 from [0:0.1/freq);
parameter real pmJitter=0 from [0:0.1/freq);

integer n, fmSeed, pmSeed;
real next, dT, dt;

analog begin
@(initial_step) begin

fmSeed = 286;
pmSeed = –459;
next = 0.5/freq + $realtime;

end

@(timer(next + dt)) begin
n = !n;
dT = fmJitter∗$dist_normal(fmSeed,0,1);
dt = pmJitter∗$dist_normal(pmSeed,0,1);
next = next + 0.5/freq + 0.707∗dT;

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt);
end
endmodule

ing of particular events. However, if jitter causes two events that would normally
occur at the same time to be displaced so that they are no longer coincident, then a
circuit simulator will have to use more time points to resolve the distinct events and
so will run more slowly. For this reason, it is desirable to combine jitter sources to
the degree possible.

From the discussion of the phase-domain model of the synthesizer, it is clear that
one can easily combine the output-referred noise of the FD and the input-referred
noise of the PFD/CP with the output noise of OSC. The fixed-frequency oscillator
model given in Listing 3 supports two jitter parameters. The fmJitter parameter is
used to model the FM jitter of the reference oscillator, and the pmJitter parameter is

11
Listing 4 — Verilog-A description of a VCO model that includes jitter.

// Voltage Controlled Oscillator with Jitter

‘include "discipline.h"
‘include "constants.h"

module VCO (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2∗Fmin from (Fmin:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01/Fmax from (0:inf);
parameter real jitter=0 from [0:0.25/Fmax);
parameter real ttol=1u/Fmax from (0:1/Fmax);

real freq, phase, dT, delta;
integer n, seed;

analog begin
@(initial_step) seed = –561;

// compute the freq from the input voltage
freq = (V(in) – Vmin)∗(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
delta = dT∗freq;
delta = delta/(1 – delta);
freq = freq∗(1 + delta);

// phase is the integral of the freq modulo 2π
phase = 2∗‘M_PI∗idtmod(freq, 0.0, 1, –0.5);

// update jitter twice per period
@(cross(phase + ‘M_PI/2, +1, ttol) or cross(phase – ‘M_PI/2, +1, ttol)) begin

dT = 1.414∗jitter∗$dist_normal(seed,0, 1);
// 1.414=sqrt(N) where N=2 jitter updates/period

end

// generate the output
n = (phase >= –‘M_PI/2) && (phase < ‘M_PI/2);
V(out) <+ transition(n ? Vhi : Vlo, 0, tt);

end
endmodule

used to model the PM jitter of the FD and PFD/CP. PM jitter is modeled in the oscil-
lator without using a nonzero delay in the transition function. This is a more effi-

12
Listing 5 — Verilog-A description of a quadrature VCO model that includes jitter.

// Quadrature Differential VCO with Jitter

‘include “discipline.h”
‘include “constants.h”

module quadVCO (PIout, NIout, PQout, NQout, Pin, Nin);

electrical PIout, NIout, PQout, NQout, Pin, Nin;
output PIout, NIout, PQout, NQout; input Pin, Nin;

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Vlo=–1, Vhi=1;
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2*Fmin from (Fmin:inf);
parameter real jitter=0 from [0:0.25/Fmax), ttol=1u/Fmax from (0:1/Fmax);
parameter real tt=0.01/Fmax;

real freq, phase, dT, delta;
integer i, q, seed;
analog begin

@(initial_step) seed = 133;

// compute the freq from the input voltage
freq = (V(Pin,Nin) - Vmin) * (Fmax - Fmin) / (Vmax - Vmin) + Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
delta = dT∗freq;
delta = delta/(1 – delta);
freq = freq∗(1 + delta);

// phase is the integral of the freq modulo 2π
phase = 2*‘M_PI*idtmod(freq, 0.0, 1, –0.5);

// update jitter where phase crosses π/2
@(cross(phase – 3*‘M_PI/4, +1, ttol) or cross(phase – ‘M_PI/4, +1, ttol) or

cross(phase + ‘M_PI/4, +1, ttol) or cross(phase + 3*‘M_PI/4, +1, ttol))
dT = 2*jitter*$dist_normal(seed,0,1); // 2=sqrt(N), N=4 jitter updates per period

// generate the I and Q outputs
i = (phase >= –3*‘M_PI/4) && (phase < ‘M_PI/4);
q = (phase >= –‘M_PI/4) && (phase < 3*‘M_PI/4);
V(PIout) <+ transition(i ? Vhi : Vlo, 0, tt);
V(NIout) <+ transition(i ? Vlo : Vhi, 0, tt);
V(PQout) <+ transition(q ? Vhi : Vlo, 0, tt);
V(NQout) <+ transition(q ? Vlo : Vhi, 0, tt);

end
endmodule

13
cient approach because it avoids generating two unnecessary events per period. To
get full benefit from this optimization, set td in the FD and PFD/CP to zero.

If the output of the VCO is not used to drive circuitry external to the synthesizer,
then it is usually possible to include the frequency division aspect of the FD as part
of the VCO by simply adjusting the VCO gain. Recall that the PM jitter of the FD
has already been included as part of OSC. The jitter at the output of the modified
VCO is the same as jitter at the output of the unmodified VCO. If the divide ratio of
FD is large, the simulation runs much faster because the high VCO output fre-
quency is never generated.

To make the HDL models even faster, rewrite them in either Verilog-HDL or
VHDL. Be sure to set the time resolution to be sufficiently small to prevent the dis-
crete nature of time in these simulators from adding an appreciable amount of jitter.

5. Characterizing Jitter
The switching nature of the blocks in a PLL prevents use of the conventional noise
analysis available from SPICE to characterize the noise of any of the blocks in a PLL
with the possible exception of the LF. The SPICE noise analysis operates by lineariz-
ing the block about a DC operating point, which is not sufficient when the block
exhibits switching behavior. SpectreRF and the simulator developed by Demir both
linearize the circuit about a time-varying operating point and compute the noise at
the output of the block while taking into account both the effect of the time-varying
operating point on the bias-dependent noise sources and the time-varying nature of
the transfer function from the noise source to the output. They differ in that Spectr-
eRF is constrained to operate on periodic circuits. In addition, SpectreRF outputs
noise as a function of frequency averaged over a period, while Demir’s simulator
computes the output noise as a function of time and integrated over all frequencies.

Both simulators linearize about the operating point and compute the noise as a post
processing step. Thus, the noise does not affect the operating point calculation and
so the simulation will not be accurate if the noise is large enough to affect the large-
signal behavior of the circuit. Generally, the amplitude of the noise sources is quite
small and so this is not a concern. However, in thresholding circuits, the noise
present when the signal crosses the threshold gets amplified tremendously. When
cascading several thresholding stages, the noise can be amplified to such a great
degree that it does change the large signal behavior, making the simulation inaccu-
rate. This occurs in a FD implemented as a ripple counter with a large number of
stages. In such cases it is necessary to break the circuit down and only characterize
the jitter of one or two stages at a time. The maximum number of stages that can be
characterized together is greater if the jitter is small relative to the transition time of
the circuit, as shown in Figure 3.

14
Figure 3 — The figures on the left show a reference signal, and one offset due to jitter. In both
the top and bottom figures, the offset is the same (they have the same amount of jitter). The top
signals have a smaller transition time than those on the bottom. The figures on the right show
the difference between the reference signal and the offset signal. For the same amount of jitter,
the maximum difference is larger when the transition time is smaller. If the difference is large
enough to cause a nonlinear response, the noise simulations will not be accurate. This problem
becomes significant when the jitter is about the same size of the transition time or larger. It
limits the number of cascaded thresholding stages that can be characterized at one time.

Reference

Reference

Offset

Offset

Difference

Difference

v

v

v

v

tt

t t

5.1 Characterizing PM Jitter
SpectreRF’s PNoise analysis computes the power spectral density of the noise at the
output of the block. If this noise is stationary (as opposed to cyclostationary), it is a
simple matter to apply (11) to calculate the jitter. Simply choose a representative set
of periodic inputs to the block and use SpectreRF’s Periodic Steady State (PSS)
analysis to compute the steady-state response. This computes the periodic operating
point about which the noise analysis is performed. It also gives v· tc() , the slew rate

of the output at threshold crossing. Apply SpectreRF’s PNoise analysis to compute
the noise power at the output as a function of frequency. Choose the frequency
range of the analysis so that the total noise at frequencies outside the range is negli-
gible. Thus, the noise should be at least 40 dB down at the highest frequency simu-
lated. Finally, integrate the noise power over frequency and apply Parseval’s
Theorem to determine

var nv() nv
2 f()df∫= , (13)

15
the total noise power [gray93], and apply (11).

When the noise is cyclostationary the same procedure is used, except a gating func-
tion is applied to the output so that only the noise that occurs near the threshold
crossing is considered in the jitter calculation. SpectreRF’s PNoise analysis com-
putes the time-average of the noise at the output, so it is not possible to post-process
the PNoise results to determine the noise at the time of the threshold crossing.
Rather, a limiter is added to the output of the block and SpectreRF computes the
noise at the output of the limiter. The limiter, shown in Figure

Figure 4 — When the device-under-test (DUT) exhibits cyclostationary noise, a limiter is
applied to output of driven block to suppress noise present outside of the active transitions. v(t)
is the output of the block, vl(t) is the output of the limiter, and nl(t) is the noise at the output of
the limiter. Noise on a waveform is denoted by using a thick trace. The output of the limiter is
only noisy when it is inside its active region (when it is not limiting).

t

v
HV

LV

v lv
DUT

Saturated

Active

Saturated

Limiter Region

Output of DUT

T

t
t1

t
t2

t

t

ln

lv

Output of Limiter

Noise at Output of Limiter

 4, is designed to satu-

rate when the output of the block is outside a certain range to prevent any noise at
the output from being considered except the noise present near when the signal

16
crosses the threshold. The limiter is shown in Listing 6.

Listing 6 — Verilog-A limiter used for characterizing PM jitter in circuits with binary outputs.

// Simple Limiter

‘include "discipline.h"
‘include "constants.h"

module limiter (out, in);

output out; input in; electrical out, in;

parameter real Vlo=–1, Vhi=1;

analog begin
// Place time-point at threshold crossings
@(cross(V(in) – Vlo) or cross(V(in) – Vhi));

// Determine the output
if (V(in) < Vlo)

V(out) <+ Vlo;
else if (V(in) > Vhi)

V(out) <+ Vhi;
else

V(out) <+ V(in);
end
endmodule

The range of the limiter, VL

and VH, is chosen such that the noise and the slew rate is approximately constant

while the limiter is active. When running PNoise analysis, assure that the maxside-
bands parameter is at least ten times larger than T/tti for any i. This assures that the

narrow noise pulses are adequately resolved by the PNoise analysis. Jitter is inde-
pendent of T, so to reduce the number of sidebands needed, use T as small as possi-
ble. If maxsidebands is not set sufficiently large, then the extracted value of jitter
will increase as T decreases.

If we assume that the amplitude of the noise during each transition is the same, then

var n tc,()
nl
2〈 〉T

tt1 tt2+
------------------= (14)

where nl
2〈 〉 is the time average of the noise power at the output of the limiter. Spec-

treRF computes the power spectral density of the noise at the output of the limiter,
and by Parseval’s theorem,

nl
2〈 〉 nl

2 f()df∫= . (15)

17
If we further assume that tt = tt1 = tt2, then

v· tc()
VH VL–

tt
--------------------≈ . (16)

And from (12)

J
var n tc,()

v· tc()

nl
2〈 〉T
Ntt

tt

VH VL–
--------------------≈= , (17)

J
nl
2〈 〉Ttt N⁄

VH VL–
-------------------------------≈ , (18)

where N = 2 is the number of transitions that occurred during the period.

This general methodology for characterizing the PM jitter of driven blocks with
binary outputs is extended or clarified for important special cases in the next few
sections.

5.1.1 PM jitter of the PFD/CP

The PFD and CP work together to generate a three-level discrete-valued signal (it
takes the values –1, 0, and +1) whose time average is used as the loop error signal.
The average of this signal controls the VCO after it has been extracted by the LF.

There are two aspects of the PFD/CP that differ from the assumptions made above.
First, the output of the CP is a current, so the limiter and the equations given in the
previous section need to be adapted. Second, the output of the CP has three distinct
levels rather than the two assumed above. Thus, the CP has a ternary output rather
than a binary output.

If it is necessary to apply a gating function, care must be taken because of the ter-
nary nature of the output. A simple limiter would allow the noise associated with
the middle value to pass. So the simple limiter should be replaced with a dead-band
limiter. This is a limiter with a dead band in the center of its input range. The dead
band rejects noise about the equilibrium point associated with the middle of the
three values.

5.1.2 PM Jitter of a FD

With ripple counters, one can only characterize a few stages at a time because of the
issue shown in Figure 3. Thus, a long ripple counter chain has to be broken into
smaller chains, and characterized individually. The total jitter for the ripple counter
is then computed by taking the square-root of the sum of the square of the jitter on
each stage.

18
Unlike in ripple counters, jitter does not accumulate with synchronous counters. Jit-
ter in a synchronous counter is independent of the number of stages. Rather, jitter of
a synchronous counter is the jitter of its clock along with the jitter of the last stage.

The input to counters are generally edge sensitive, and so are only affected by jitter
on either the positive-going or the negative-going clock transitions, but not both.
However, this should not affect the way in which blocks are characterized as long as
the behavioral models for the dividers also have edge-sensitive inputs. Then the
behavioral model of the dividers only react to jitter on the proper edge and ignore
jitter on the other edge.

5.1.3 Differential Outputs

When a circuit has multiple outputs, such as in the case where a circuit has differen-
tial outputs, there may be correlation between the jitter on the various outputs. Cur-
rently SpectreRF does not compute the correlation in noise between two outputs,
however in some cases it is possible to use physical reasoning to determine how to
model the correlation. Consider a synchronous counter with differential outputs.
Clearly, the jitter that derives from the clock will be perfectly correlated between
the two outputs. The jitter from the last stage will be partially correlated, but again,
some estimate of the degree of correlation is often possible if you understand the
implementation of the last stage.

5.2 Characterizing FM Jitter
The noise of a free-running oscillator is dominated by phase noise, which is a ran-
dom shifting of the frequency, and hence the phase, of the oscillation signal over
time. The phase of an oscillator is subject to this variation because it is free running:
there is no drive signal with which to lock and so no synchronization between the
signals generated by the oscillator and any reference signal. Indeed, it is the func-
tion of the feedback in the PLL to provide this synchronization in order to reduce
the phase noise of the VCO.

Phase noise and FM jitter are different ways of describing the same underlying phe-
nomenon, and so there is a direct conversion between phase noise and FM jitter.
There is no need to invoke the use of thresholds or gating functions in order to make
the conversion.

SpectreRF’s PNoise analysis is used to compute the phase noise of either the OSC
or the combination of the LF and VCO. The power spectral density of the phase of

19
phase noise is proportional to 1 fm
2⁄ where fm = f – fc is the frequency offset from

the carrier (this ignores any flicker or 1/f noise). Define a such that

Sφ fm() a
2πfc()2

2πfm()2
--------------------= . (19)

Then, the phase noise is completely characterized once a and fc are known. Typi-

cally, phase noise is measured as L(fm), the ratio of the noise power in a 1 Hz band-

width at fm to the carrier signal power. In the region where the noise at the fc fm±

sidebands are correlated [vendelin90],

Sφ fm() 2L fm()= . (20)

This occurs at frequencies close to fc where the phase noise dominates over additive

noise. Thus,

a 2L fm()
fm
2

fc
2

-----= . (21)

a is the noise added per period T, and so the jitter is [demir97]

J aT= . (22)

6. Example
These ideas were applied to model and simulate a PLL acting as a frequency syn-
thesizer that multiplies the reference frequency by a factor of roughly 5000 (N =
5000). The FD was included into the VCO, which suppressed the high frequency
signal at the output of the VCO. The results are shown in Figure 5. The simulation
took 15 minutes for 250k time-points on a Sun Sparc 5. The use of a large number
was motivated by the desire to have good resolution of the noise at low frequencies.

The low-pass filter LF blocks all high frequency signals from reaching the VCO, so
the noise of the phase lock loop at high frequencies is the same as the noise gener-
ated by the open-loop VCO alone. At low frequencies, the loop gain act to stabilize
the phase of the VCO, and the noise of the PLL is contributed by OSC, PFD/CP,
FD. There is some contribution from the VCO, but it is diminished by the gain of
the loop. The measured results agree qualitatively with the these expected results.

7. Conclusion
A methodology for modeling and simulating the jitter performance of phase-locked
loops was presented. The simulation is done at the behavioral level, and so is effi-

20
Figure 5 — SpectreRF results for the phase noise of the open-loop VCO, and Spectre results
for the closed-loop PLL modeled in Verilog-A. In this case, the phase noise of the VCO
dominates as a source of jitter in the PLL, but that jitter is reduced at low frequencies by the
feedback of the loop.

 –130 dBc/Hz

 –120 dBc/Hz

 –110 dBc/Hz

 –100 dBc/Hz

–90 dBc/Hz

–80 dBc/Hz

30 kHz 100 kHz 300 kHz 1 MHz 3 MHz 10 MHz

N
oise

Offset from Carrier

Open Loop VCO Noise

Closed Loop PLL Noise

(Verilog-A)

(SpectreRF)

cient enough to be applied in a wide variety of applications. The behavioral models
are calibrated from circuit-level noise simulations, and so the high-level simulations
are accurate. Behavioral models were presented in the Verilog-A language, however
these same ideas can be used to develop behavioral models in purely event-driven
languages such as Verilog-HDL and VHDL.

This methodology is flexible enough to be used in a broad range of applications
where jitter is important. Examples include, clock generation and recovery, sam-
pling systems, over-sampled ADCs, digital modulation and demodulation systems,
fractional-N frequency synthesis, and disk read channels.

Acknowledgments

I would like to thank Alper Demir for many enlightening conversations about noise
and jitter. I would also like to thank Mark Chapman, Masayuki Takahashi, and
Kimihiro Ogawa of Sony Semiconductor and Frank Hellmich and Randeep Soin of
Cadence Design Systems for their probing questions and insightful comments, as
well as their help in validating these ideas on real frequency synthesizers.

References
[chang97] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E.

Malavasi, A. Sangiovanni-Vincentelli, and I. Vassiliou. A Top-

21
Down Constraint-Driven Methodology for Analog Integrated Cir-
cuits. Kluwer Academic Publishers, 1997.

[demir94] A. Demir, E. Liu, A. Sangiovanni-Vincentelli, and I. Vassiliou.
Behavioral simulation techniques for phase/delay-locked systems.
Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 453-456, May 1994.

[demir96a] A. Demir, E. Liu, and A. Sangiovanni-Vincentelli. Time-domain
non-Monte-Carlo noise simulation for nonlinear dynamic circuits
with arbitrary excitations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 5, pp. 493-
505, May 1996.

[demir96b] A. Demir, A. Sangiovanni-Vincentelli. Simulation and modeling
or phase noise in open-loop oscillators. Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 445-456, May 1996.

[demir97] Alper Demir. Analysis and Simulation of Noise in Nonlinear Elec-
tronic Circuits and Systems. Ph. D. Dissertation. University of Cal-
ifornia, Berkeley. Spring 1997.

[gardner79] Floyd M. Gardner. Phaselock Techniques. John Wiley & Sons,
1979.

[gray93] P. R. Gray and R. G. Meyer. Analysis and Design of Analog Inte-
grated Circuits. J. Wiley & Sons, Third Edition, 1993.

[ovi96] Verilog-A Language Reference Manual: Analog Extensions to
Verilog-HDL, version 1.0. Open Verilog International, 1996.
Available from www.ovi.org.

[telichevesky96a]R. Telichevesky, K. Kundert, J. White. Receiver characterization
using periodic small-signal analysis. Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, May 1996.

[telichevesky96b]R. Telichevesky, K. Kundert, J. White. Efficient AC and noise
analysis of two-tone RF circuits. Proceedings of the 33rd Design
Automation Conference, June 1996.

[vendelin90] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde. Micro-
wave Circuit Design. J. Wiley & Sons, 1990.

	Modeling and Simulation of Jitter in Phase-Locked Loops
	Ken Kundert
	Cadence Design Systems San Jose, California, USA
	Abstract
	1. Introduction
	2. Frequency Synthesis
	Figure 1 - The block diagram of a frequency synthesizer.
	. (1)
	2.1 Phase-Domain Noise Model
	Figure 2 - Linear time-invariant phase-domain model of the synthesizer shown in Figure 1. The out-board frequency dividers are removed for simplicity. The f’s represent various sources of noise.
	(2)
	(3)
	. (4)
	(5)
	. (6)

	3. Jitter
	. (7)
	3.1 PM Jitter
	(8)

	3.2 FM Jitter
	. (9)

	3.3 A Metric for Jitter
	. (10)

	3.4 Thresholds and Jitter
	(11)
	. (12)

	4. Model of PLL
	4.1 Jitter Models
	4.2 Modeling PM jitter
	Listing 1 - Verilog-A description of a frequency divider that models jitter. PM jitter is modeled by randomly dithering the delay argument of the transition() function on every output transition.
	Listing 2 - Verilog-A description of a simple PFD/CP that models jitter.

	4.3 Modeling FM jitter
	Listing 3 - Verilog-A description of a free-running fixed frequency oscillator. FM jitter is modeled by adding a random perturba...
	Listing 4 - Verilog-A description of a VCO model that includes jitter.
	Listing 5 - Verilog-A description of a quadrature VCO model that includes jitter.

	4.4 Efficiency of the Models

	5. Characterizing Jitter
	Figure 3 - The figures on the left show a reference signal, and one offset due to jitter. In both the top and bottom figures, th...
	5.1 Characterizing PM Jitter
	, (13)
	Figure 4 - When the device-under-test (DUT) exhibits cyclostationary noise, a limiter is applied to output of driven block to su...
	Listing 6 - Verilog-A limiter used for characterizing PM jitter in circuits with binary outputs.

	(14)
	. (15)
	. (16)
	, (17)
	, (18)
	5.1.1 PM jitter of the PFD/CP
	5.1.2 PM Jitter of a FD
	5.1.3 Differential Outputs

	5.2 Characterizing FM Jitter
	. (19)
	. (20)
	. (21)
	. (22)

	6. Example
	Figure 5 - SpectreRF results for the phase noise of the open-loop VCO, and Spectre results for the closed-loop PLL modeled in Ve...

	7. Conclusion
	Acknowledgments
	References
	[chang97] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I. Vassiliou. A Top- Down Constraint-Driven Methodology for Analog Integrated Circuits. Kluwer Academic Publishers, 1997.
	[demir94] A. Demir, E. Liu, A. Sangiovanni-Vincentelli, and I. Vassiliou. Behavioral simulation techniques for phase/delay-locked systems. Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 453-456, May 1994.
	[demir96a] A. Demir, E. Liu, and A. Sangiovanni-Vincentelli. Time-domain non-Monte-Carlo noise simulation for nonlinear dynamic ...
	[demir96b] A. Demir, A. Sangiovanni-Vincentelli. Simulation and modeling or phase noise in open-loop oscillators. Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 445-456, May 1996.
	[demir97] Alper Demir. Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems. Ph. D. Dissertation. University of California, Berkeley. Spring 1997.
	[gardner79] Floyd M. Gardner. Phaselock Techniques. John Wiley & Sons, 1979.
	[gray93] P. R. Gray and R. G. Meyer. Analysis and Design of Analog Integrated Circuits. J. Wiley & Sons, Third Edition, 1993.
	[ovi96] Verilog-A Language Reference Manual: Analog Extensions to Verilog-HDL, version 1.0. Open Verilog International, 1996. Available from www.ovi.org.
	[telichevesky96a] R. Telichevesky, K. Kundert, J. White. Receiver characterization using periodic small-signal analysis. Proceedings of the IEEE Custom Integrated Circuits Conference, May 1996.
	[telichevesky96b] R. Telichevesky, K. Kundert, J. White. Efficient AC and noise analysis of two-tone RF circuits. Proceedings of the 33rd Design Automation Conference, June 1996.
	[vendelin90] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde. Microwave Circuit Design. J. Wiley & Sons, 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

