Top-Down Design of Mixed-Signal Circuits

Ken Kundert

Cadence Design Systems
San Jose, California, USA

Abstract

With mixed-signal designs becoming more complex and time-to-mar ket
windows shrinking, designers cannot hope to keep up unless they
change the way they design. They must adopt a more formal process
for design and verification: top-down design. It involves more than
simply a cursory design of the circuit block diagram before designing
the blocks. Rather, it also involves developing and following a formal
verification plan and an incremental and methodical approach for
transforming the design from a abstract block diagram to a detailed
transistor-level implementation.

1. Introduction

At the Design Automation Conference in 1998, Ron Collett of Collett
International presented findings from a 1997 productivity study in
which his firm analyzed 21 chip designs from 14 leading semiconduc-
tor firms. The study revealed a productivity gap of 14" between the
most and least productive design teams. The study also revealed that
developing analog and mixed-signal circuitry requires three to seven
time more effort per transistor than designing digital control logic,
though this factor was normalized out of the 14" ratio.

In my experience, the primary culprits behind the poor productivity of
those at the bottom of the scale are increasingly complex designs com-
bined with a continued preference for bottom-up (i.e., transistor-level)
design methodology and the occurrence of simulation late in the design
cycle, which leads to errors and re-spins. There's a huge disparity in
productivity between those mixed-signal designers who have transi-

2

tioned to a “top-down” design methodology and use mixed-signal
hardware description languages (MS-HDLSs), and those who practice
“bottom-up” design and rely solely on SPICE.

1.1. Getting to Market First

With the internet and wireless technology as the latest market drivers,
the pace of the electronic marketplace continuesto quicken. New prod-
ucts and new product categories are being created faster than ever
before. In order to keep up with the rapid pace of the market, designers
must get their products to market more quickly than ever. Those that
are successful at bringing significant new capabilities to the market
first are usually rewarded with higher profit margins and greater mar-
ket share. Conversely, those that are late must face an uphill battle
against entrenched competition. To understand this, consider three sce-
narios for developing a product, illustrated in Figure 1. First consider

A
$
L !
. time
------------ " Incremental Investment and Return
A
s
R >
- time
Accumulated Investment and Return
Efficient and Timely Inefficient and Untimely Inefficient but Timely

Figure 1. The expected investment and return for the same product
developed using three different approaches.

employing an efficient product development process and being first to
market. Then consider using the same number of developers with an
inefficient development process. Furthermore, assume that this causes
the product to be late to market, which results in a much lower return

3

because the product enters a market where a competitor has already
established leadership position and because there are fewer available
customers left. Finally, consider using an inefficient development pro-
cess but increasing the number of developersin order to reach the mar-
ket first. If this were possible, the development costs would be higher,
but the total return is amost the same as in the first case. This is
because the returns are expected to be much greater than the initial
development costs.

This example shows that it is more important to get a product to the
market first than it is to control development costs. Of course this
assumes that the product is the right product in that it satisfies the cus-
tomers needs, and that it has some new and very valuable capability.
With follow on products, the situation is somewhat different. Here, the
market |eadership position is largely determined and the need to
develop the product in atimely manner is balanced by the need to con-
trol development costs.

1.2. Design Productivity Gap

Moore's observation that the number of transistors available on an
integrated circuit doubles every 18 to 24 months continues to hold.
Competitive pressures compel designers to use these transistors to
either provide additional functionality and to increase the integration
level and thereby decreasing the size, weight, power and cost of the
product. As a result, designers are confronted with larger and more
complex designs. The increasing size and complexity of these designs
combines with the shrinking time available to develop and get them to
market; making the job of the circuit designer today much more diffi-
cult than in the past.

Circuits are getting more complex in two different ways at the same
time. First, circuits are becoming larger. Consider wireless products.
30 years ago atypical receiver contained between 5 and 10 transistors
whereas it is common for a modern cell phone to contain 10M transis-
tors. Second, the operation of the circuits are becoming more complex.
30 years ago integrated circuits generally consisted of simple func-
tional blocks such as opamps and gates. Verification typically required

4

simulating the block for two or three cycles. Today, mixed-signal chips
implement complex algorithms that require designers to examine their
operation over thousands of cycles. Examples include PLLs, SD con-
verters, magnetic storage PRML channels, and CDMA transceivers.
The result of these two effects together is that complexity isincreasing
at a blistering pace, and is outstripping the designers ability to keep up.
For example, 30 years ago you could build a radio from arock and a
wire, whereas to build a modern radio requires more compute power
than existed in the largest supercomputer available back then.

The CAD tools and computers employed by designers continually
improve, which serves to increase the productivity of designers. How-
ever, the rate of productivity increase is not sufficient to allow the
designers to keep up with the increasing complexity of designs and
decreasing time-to-market requirements. The growing difference
between the improvement in productivity needed to satisfy the
demands of the market and the productivity available simply by using
the latest CAD tools and computers is referred to as the Design Pro-
ductivity Gap. To close this gap, one must change the way design is
done. A design style that reduces the number of seria steps, increases
the likelihood of first time working silicon, and increases the number
of designers that can work together effectively is needed. If a design
group fails to move to such a design style, it will become increasingly
ineffective. It eventually will be unable to get products to market in a
time of relevance and so will be forced out of the market.

2. Bottom-Up Design

The traditional approach to design is referred to as bottom-up design.
In it, the design process starts with the design of the individual blocks,
which are then combined to form the system. The design of the blocks
starts with a set of specifications and ends with atransistor level imple-
mentation. At this point, each block is verified as a stand-alone unit
against specifications and not in the context of the overall system.
Once verified individually, the blocks are then combined and verified
together, but at this point the entire system is represented at the transis-
tor level.

5

While the bottom-up design style continues to be effective for small
designs, large designs expose several important problems in this
approach.

» Once the blocks are combined, simulation takes along time and ver-
ification becomes difficult and perhaps impossible. The amount of
verification must be reduced to meet time and compute constraints.
| nadequate verification may cause projects to be delayed because of
the need for extra silicon prototypes.

» For complex designs, the greatest impact on the performance, cost
and functionality is typically found at the architectural level. With a
bottom-up design style, little if any architectural exploration is per-
formed, and so these types of improvements are often missed.

 Any errors or problems found when assembling the system are
expensive to fix because they involve redesign of the blocks.

e Communication between designers is critical, yet an informal and
error prone approach to communication is employed. In order to
assure the whole design works properly when the blocks are com-
bined, the designers must be in close proximity and must communi-
cate often. With the limited ability to verify the system, any failurein
communication could result in the need for additional silicon proto-
types.

» Several important and expensive steps in the bottom-up design pro-
cess must be performed serially, which stretches the time required to
compl ete the design. Examples include system-level verification and
test devel opment.

The number of designers than can be used effectively in a bottom-up
design process is limited by the need for intensive communication
between the designers and the inherently serial nature of several of the
steps. The communication requirements also tend to require that
designers be co-located.

3. Top-Down Design

In order to address these challenges, many design teams are either
looking to, or else have already implemented, a top-down design meth-
odology. In a basic top-down approach, the architecture of the chip is

6

defined as a block diagram and simulated and optimized using either a
MS-HDL simulator or a system simulator. From the high-level simu-
lation, requirements for the individual circuit blocks are derived. Cir-
cuits are then designed individually to meet these specifications.
Finally, the entire chip is laid out and verified against the original
reguirements.

This represents the widely held view of what top-down design in. And
while this is a step towards top-down design, it only addresses one of
the issues with bottom-up design and there is much more that can be
done. To overcome the remaining issues, one must go further. Also
needed is a formal verification planning procedure and a mixed-level
verification strategy. Both act to reduce risk and are added with the
understanding that with complex mixed-signal circuits, complete final
transistor-level verification is at a minimum very expensive and is
often impractical. With careful planning one can use mixed-level simu-
lation to move the verification up in the design process where it is less
expensive and so can be more comprehensive. It also tends to find
errors earlier in the design process when recovery is easier and less
expensive.

A well designed top-down design process methodically proceeds from
architecture- to transistor-level design. Each level is fully designed
before proceeding to next and each level isfully leveraged in design of
next. It acts to partition the design into smaller, well defined blocks,
and so allows more designers to work together productively. Thistends
to reduce the total time required to complete the design. A top-down
design process also formalizes and improves communications between
designers. This reduces the number of flaws that creep into a design
because of miscommunication. The formal nature of the communica-
tion also allows designersto located at different sites and still be effec-
tive.

Following a top-down design methodology also reduces the impact of
changes that come late in the design cycle. If, for whatever reason, the
circuit needs to be partially redesigned, the infrastructure put in place
as part of the methodology allows the change to be made quickly. The
models can be updated and impact on the rest of system can be quickly

2

evaluated. The simulation plan and the infrastructure for mixed-level
simulations would already be available and can be quickly applied to
verify any changes.

3.1. System Architect

The system architect is a new member of the design team. He or sheis
the leader of the top-down design process and is expected to develop
the simulation and modeling plans and to coordinate with the other
designers to assure that the plans are followed. The primary responsi-
bility of the system architect is to assure that the system operates as
expected when finally implemented. This must be a designer that has
experience in the type of system being designed so that he or she can
anticipate and plan for issues that are likely to occur. Preferably, the
experience covers aspects of both system and block design. The system
architect may be the system engineer, the one that actually designs the
block diagram, but it need not be. However, the system architect
should not also have block design responsibilities. Block design has a
tendency of consuming an engineer.

The system architect should be comfortable with modeling and MS-
HDLs to the point where he or she can write the descriptions of both
the system and the individual blocks. Since most designers are not
skilled at modeling and not familiar with MS-HDLs, the system archi-
tect should also be able to train the other engineers on the project on
the use of MS-HDL s. However, it isimportant to recognize that model -
ing is a skill that is distinct from design. Designer often have neither
the skill nor the inclination to write sophisticated models. If sophisti-
cated models are required, they generally must be developed by the
system architect.

The system architect must have a good understanding of simulation. In
particular, where and how simulation can be used to verify areas of
concern in the design, and where it cannot. This knowledge is lever-
aged heavily during the development of the simulation plan.

The system architect owns the top-level schematic for the design. This
schematic must be captured before any block design begins, even
though it is likely to change before the design is complete. The top-

8

level schematic specifies the partitioning of the design into blocks and
the interface for each block. So each block should be “pin-accurate”.
By thisisit meant that in the top-level schematic, each block, and each
pin on each block, is represented, and the type of each pin is carefully
defined and documented. For example, an enable line on a block may
be denoted “3V CMOS active high” or atrigger line may be described
with “5V TTL positive edge triggered”. In thisway, the top-level sche-
matic provides “clarity of intention” to the design team.

Oncethetop-level schematic is captured, the top-level models are writ-
ten, usually by the system architect, and the system completely verified
according the ssimulation plan. The top-level schematic and models are
then distributed to everyone on the design team. As the design
progresses, the system architect would approve and coordinate any
changes to the block interfaces, and then distribute updated models of
the system or the blocks to the team. Asthe block designers work, they
would provide transistor-level schematics (pre- and post-layout) to the
system architect, who would then verify them with mixed-level simu-
lation, again according to the simulation plan, before accepting them.

During the design process, the system architect would work with the
test engineers to devel op the test plan and test programs. The availabil-
ity of aworking model of the system early in the design process allows
test engineers to begin the development and testing of test programs
early. Moving this activity, which used to occur exclusively after the
design was complete, so that it starts at the same time the block design
begins significantly reduces the time-to-production [1,2,3,6].

3.2. Simulation and Modeling Plans

An important focus in a good top-down design methodology is the
development of a comprehensive simulation plan, which in turn leads
to a modeling plan. This is done by the system architect with input
from the whole design team. The process begins by identifying particu-
lar areas of concern in the design. Plans are then developed for how
each area of concern will be verified. The plans would specify how the
test would be preformed, and which blocks would be at the transistor
level during the test. For example, if an area of concern is the loading

9

of one block on another, the plan might specify that one test should
include both blocks represented at the transistor level together. For
those blocks for which models are used, the effects required to be
included in the model are identified for each test. Thisis the beginning
the modeling plan. Typically, many different models will be created
for each block. These models may be written either by the system
architect or the block designer.

It isimportant to resist the temptation to specify and write models that
are more complicated than necessary. Start with simple models and
only model additional effects as needed (and as spelled out in the mod-
eling plan). Also, the emphasis when writing models should be to
model the behavior of the block, not its structure. A simple equation
that relates the signals on the terminals is preferred to a more compli-
cated model that tries to mimic the internal working of the block. This
IS counter to the inclination of most designers, whose intimate knowl-
edge of the internal operation of the block usually causes them to write
models that are faithful to the architecture of the block, but more com-
plicated than necessary. Following these general rules will result in
faster simulations and less time spent writing models.

A formal planning process generally results in more efficient and more
comprehensive verification, meaning that more flaws are caught early
and so there are fewer design iterations. The simulation and test plans
would initially be applied to the high-level description of the system,
where they can be quickly debugged. Once available, they can be
applied during the mixed-level simulations of the blocks, reducing the
chance that errors will be found late in the design cycle.

3.3. System-Level Verification

System-level design is generally performed by system engineers. Their
goa is to find an algorithm and architecture that implement the
required functionality while providing adequate performance at mini-
mum cost. They typically use system-level simulators, such as Matlab,
Simulink or SPW [4,5], that allow them to explore various algorithms
and evaluate trade-offs early in the design process. These tools are pre-
ferred because they represent the design as a block diagram, they run

10

quickly, they support the abstract data types used at the system level,
and have large libraries of predefined blocks for common application
areas.

This phase of the design provides a greater understanding of system
early in the design process. It aso allows a rapid optimization of the
algorithm and moves trades to the front of design process where
changes are inexpensive and easy to make. Unworkable approaches are
discarded early. Simulation is also moved further up in the design pro-
cess where it is much faster and can also be used to help partition the
system into blocks and budget their performance requirements.

Once the algorithm is chosen, it must be mapped to a particular archi-
tecture. Thus, it must be refined to the point where the blocks used at
the system level accurately reflect the way the circuit is partitioned for
implementation. The blocks must represent sections of the circuit that
are to be designed and verified as a unit. Furthermore, the interfaces
must be chosen carefully to avoid interaction between the blocks that
are hard to predict and model, such as loading or coupling. The pri-
mary goal at this phase is the accurate modeling of the blocks and their
interfaces. This contrasts with the goal during algorithm design, which
Isto quickly predict the output behavior of the entire circuit with little
concern about matching the architectural structure of the chip asimple-
mented. As such, mixed-signal hardware description languages (MS-
HDLSs) such as Verilog-AMS [6] or VHDL-AMS [8] become preferred
during this phase of the design because they allow accurate modeling
of the interfaces and support mixed-level simulation.

The transition between algorithm and architecture design currently rep-
resents a discontinuity in the design flow. The tools used during algo-
rithm design are different from the ones used during architecture
design, and they generally operate off of different design representa-
tions. Thus, the design must be re-entered, which is a source of ineffi-
ciencies and errors. It also prevents the test benches and constraints
used during the algorithm design phase from being used during the rest
of the design.

11

On the digital side, tools such as SPW do provide paths to implementa-
tion via Verilog and VHDL generation. Similar capabilities do not yet
exist for the analog or mixed-signal portions of the design. An alterna-
tive is to use Verilog-AMS or VHDL-AMS for both algorithm and
architecture design. This has not been done to date because simulators
that support these languages are just now becoming available. It will
probably take a while for this approach to become established because
of the absence of application specific libraries.

3.4. Mixed-Level Verification

Digital synthesis maps digital behavior onto digital gates that are
arranged in a rather constrained topology. The simple nature of gates
combined with the constrained topology makes synthesis feasible.
With analog circuitry, the fundamental building blocks are much more
complex and varied and the topology is completely unconstrained.
These two factors make analog synthesis a fundamentally much more
difficult problem than digital synthesis. Analog synthesis so far has
resisted all attempts at automation except in limited cases, such as ana-
log filters. Work continues, but we are still far from having universal
analog synthesis.

Without analog synthesis, analog design is done the old fashioned way,
with designers manually converting specifications to circuits. While
this allows for more creativity, it also results in more errors, particu-
larly those that stem from miscommunication. These miscommunica-
tions result in errors that prevent the system from operating properly
when the blocks are assembled even though the blocks were thought to
be correct when tested individually.

To overcome this problem, mixed-level simulation is employed in a
top-down design methodology for analog and mixed-signal circuits
(this represents a significant but essential departure from the digital
design methodology). Mixed-level simulation is required to establish
that the blocks will function as designed in the overall system.

To verify ablock with mixed-level simulation, the model of the block
in the top-level schematic is replaced with the transistor level sche-
matic of the block before running the simulation. In mixed-level simu-

12

lation, the system, described at a high level, acts as a test-bench for the
block, which is described at the transistor level. Thus, the block is ver-
ified in the context of the system, and it is easy to see the effect of
imperfections in the block on the performance of the system. Mixed-
level simulation requires that both the system and the block designers
use the same simulator and that it be well suited for both system- and
transistor-level simulation.

Mixed-level simulation allows a natural sharing of information
between the system and block designers. When the system level model
Is passed to the block designer, the behavioral model of a block
becomes an executable specification and the description of the system
becomes an executable test bench for the block. When the transistor
level design of the block is complete, it is easily included in the system
level simulation by the system architect.

Mixed-level ssimulation is the only feasible approach currently avail-
able for verifying large complex mixed-signal systems. Some propose
to use either timing simulators (sometimes referred to as fast or
reduced accuracy circuit simulators) or circuit simulators running on
parallel processors. However, both approaches defer system-level veri-
fication until the whole system is available at transistor level, and nei-
ther provide the performance nor the generality needed to verify most
mixed-signal systems.

3.5. Bottom-Up Verification

Once a block is implemented, one could update the models that repre-
sent it to more closely mimic its actual behavior. This would improve
the effectiveness of mixed-level and system-level simulation. This pro-
cess is referred to as bottom-up verification. To reduce the chance of
errors, it is best done during the mixed-level simulation procedure. In
this way, the verification of a block by mixed-level simulation
becomes a three step process. First the proposed block functionality is
verified by including an idealized model of the block in system-level
simulations. Then, the functionality of the block asimplemented is ver-
ified by replacing the idealized model with the netlist of the block. This
also allows the effect of the block’s imperfections on the system per-

13

formance to be observed. Finally, the netlist of the block is replaced by
an extracted model. By comparing the results achieved from simula-
tions that involved the netlist and extracted models, the functionality
and accuracy of the extracted model can be verified. From then on,
mixed-level simulations of other blocks are made more representative
by using the extracted model of the block just verified rather than the
idealized model.

When done properly, bottom-up verification allows the detailed verifi-
cation of very large systems. The behavioral simulation runs quickly
because the details of the implementation are discarded while keeping
the details of the behavior. Because the details of the implementation
are discarded, the detailed behavioral models generated in a bottom-up
verification process are useful for third-party |P evaluation and reuse.

Though bottom-up verification is helpful when verifying the perfor-
mance of large systems, it is rarely done today. Generating behavioral
model s that include the detailed behavior of even simple blocksis quite
difficult and requires a specialized skill not commonly found in the
design team. This situation is not expected to change until automated
tools and methodol ogies devel op to generate detailed behavioral mod-
els.

Mixed-level simulation is currently the best approach to verifying large
mixed-signal systems that are designed with a top-down methodology.
However, eventualy systems will be too large to completely verify
with mixed-level simulation, in which case a bottom-up verification
approach will become necessary.

3.6. Final Verification

In a top-down design process, SPICE-level simulation is used judi-
ciously in order to get the benefits without incurring the costs. All
blocks are simulated at the transistor level in the context of the system
(mixed-level simulation) in order to verify their functionality and inter-
face. Areas of special concern, such as critical paths, are identified up
front and simulated at the transistor level. The performance of the cir-
cuit is verified by simulating just the signal path or key pieces of it at
the transistor level. Finally, if start-up behavior is a concern, it is also

14

simulated at the transistor level. The idea is not to eliminate SPICE
simulation, but to reduce the time spent in SPICE simulation while
increasing the effectiveness of simulation in general by careful plan-
ning.

4. MS-HDLs

Both Verilog-AMS and VHDL-AMS have been defined and commer-
cial implementations are emerging. These languages are expected to
have a big impact on the design of mixed-signal systems because they
provide a single language and a single simulator that are shared
between analog and digital designers. It will be much easier to provide
a single design flow that naturally supports analog, digital and mixed-
signal blocks, making it simpler for these designers to work together. It
also becomes substantially more straight-forward to write behavioral
models for mixed-signal blocks. Finally, the AMS languages bring
strong event-driven capabilities to analog simulation, allowing analog
event-driven models to be written that perform with the speed and
capacity inherited from the digital engines.

It is important to recognize that the AMS languages are primarily used
for verification. Unlike the digital languages, the AMS languages will
not be used for synthesis because the only synthesis that is available
for analog circuitsis very narrowly focused.

4.1. Verilog-AMS

Verilog-A is an analog hardware description language patterned after
Verilog-HDL. Verilog-AMS combines Verilog-HDL and Verilog-A
into aMS-HDL that is a super-set of both seed languages [7]. Verilog-
HDL provides event-driven modeling constructs, and Verilog-A pro-
vides continuous-time modeling constructs. By combining Verilog-
HDL and Verilog-A it becomes possible to easily write efficient
mixed-signal behavioral models. Verilog-AMS also provides auto-
matic interface element insertion so that analog and digital models can
be directly interconnected even if their terminal / port types do not

15

match. It also provides support for back annotating interconnect para-
sitics.

A commercial version of Verilog-AMS that also supports VHDL is
expected soon from Cadence Design Systems.

4.2. VHDL-AMS

VHDL-AMS adds continuous time modeling constructs to the VHDL
event-driven modeling language [8]. Like Verilog-AMS, mixed-signal
behavioral models can be directly written in VHDL-AMS. Unlike with
Verilog, thereis no analog-only subset.

VHDL-AMS inherits both the good and the bad aspects of VHDL. For
example, VHDL-AMS inherently supports configurations and abstract
data types. However, VHDL is also strongly typed, which is a serious
problem for mixed-signal designs. Y ou are not allowed to interconnect
digital and analog ports, and there is no support for automatic interface
element insertion. In fact, you are not even allowed to connect ports
from an abstract analog model (asignal flow port) to a port from alow-
level analog model (a conservative port). This makes it difficult to sup-
port mixed-level ssimulation. VHDL-AMS also does not provide sup-
port for back-annotation of RC interconnect. These represent
fundamental flaws that will have to be overcome by a simulation envi-
ronment, making VHDL-AMS much more dependent on its environ-
ment. This should slow deployment of effective VHDL-AM S-based
flows.

A commercia version of VHDL-AMS that also supports Verilog is
available from Mentor Graphics [9]. A VHDL-AMS simulator is also
expected soon from Analogy [9].

5. Example

Though this example is several years old, it is representative of the
type of circuit complexity that is becoming mainstream today. It is a
PRML channel chip that it difficult to simulate for two reasons. First, it
is a relatively large circuit that involves both analog and digital sec-

16

tions that are closely coupled. Second, the architecture involves com-
plex feedback loops and adaptive circuits that take many cycles to
settle. The combination of many transistors and many cycles combines
with the result being a simulation that is so expensive as to be impracti-
cal. In this case, the expected simulation time was predicted to be
greater than a month.

The traditional approach to simulating a complex circuit like this
would be to simulate the blocks individually. Of course this verifies
that the blocks work individually, but not together. In addition, for this
circuit it is difficult to verify the blocks when operating outside the
system, and it is difficult to predict the performance of the system just
knowing the performance of the individual blocks.

When the architecture was simulated at a high level with each block
represented by a pin-accurate behavioral model, the simulation time
was less than 10 minutes. Then, when a single block was run at the
transistor level, the simulation ran overnight. Even though the full sys-
tem was never simulated at the transistor level, it worked the first time
because this methodology verified the blocks in the context of the sys-
tem and it verified the interfaces between the blocks.

6. Development of System Architects

The primary barrier to widespread adoption of atop-down design style
for complex mixed-signal circuits is a lack of engineers with the skills
and training to be system architects. A system architect must

Be fluent in an AMS language and skilled in the art of modeling

» Be an experienced designer

Have a good understanding of the top-down design process

Be proficient in the use of circuit and AMS simulation

Have the ability to lead and manage complex projects

Given the high pressure world that most designerslivein, it isunlikely
that they will be able to acquire such a broad and deep set of skills
while on the job, even if they are motivated to do so. Rather, it is
important for their employers to look for engineers that have the inter-
est and the relevant background and invest the time and training to

17

develop them into system architects. In addition, it is essential that
appropriate training becomes available from universities and continu-
ing education centers.

7. Conclusion

Top-down design is a formal design process that requires a serious
commitment throughout the entire design process. It is not a piece of
software or something you do in your spare time. It is not a way to
reduce headcount or something you can try after the design is com-
plete. It is considerably more than simply doing the initial design of the
block diagram with Simulink and it is not something you can be suc-
cessful at without a significant investment in time and training. How-
ever, it is much easier the second time around and once mastered
provides a dramatic return. Using top-down design usually results in
needing fewer design iterations, which provides a more predictable
design process. It also results in more optimal designsin a shorter time.
Finally, it allows design teams to be larger and more dispersed, giving
the option of trading a higher initial investment for a shorter time-to-
production.

Acknowledgements

Much of the material presented is based on discussions with Dan Jef-
feries and Henry Chang of Cadence Design Systems and Jm Holmes
of Texas Instruments.

Bibliography
[1] C. Force, T. Austin. Testing the design: the evolution of test simu-
lation. International Test Conference, Washington 1998.

[2] C. Force. Integrating design and test using new tools and tech-
niques. Integrated System Design, February 1999.

[3] Dantes virtual test environment, www.virtualtest.com.
[4] Matlab and Simulink, www.mathwor ks.com.

[S]

6]

[7]

[8]
[9]

18

Sgnal-Processing Worksystem User’'s Guide. Cadence Design
Systems, San Jose, CA.

SpectreVX and SaberVX virtual test environments, www.tera-
dyne.com.

Verilog-AMS Language Reference Manual: Analog & Mixed-Sg-
nal Extensionsto Verilog HDL, version 2.0. Open Verilog Interna-
tional, 2000. Available from www.ovi.org.

VHDL-AMS, www.vhdl.org/anal og.
VHDL-AMS simulators, www.vhdl-ams.com.

