
Abstract — Distortion in circuits along the signal path
of a transceiver plays a key role in determining the
overall performance of digital communication systems.
This paper describes how recent improvements in the
mixed frequency/time algorithm (MFT) expand our
ability to predict the distortion of these circuits. The
MFT algorithm extends traditional shooting methods
to directly compute the quasiperiodic steady-state
response of circuits driven by two or more periodic sig-
nals, each at independent frequencies.

With these improvements, MFT can be directly applied
to accurately and efficiently compute the intermodula-
tion distortion of large circuits driven by a small num-
ber of discrete tones. This is representative of the
signals found in receivers. However in transmitters,
concern focuses on the affect of intermodulation distor-
tion from complex digitally modulated signals. Such
signals cannot be handled directly by MFT, but we
demonstrate how a macromodel can be constructed
that is used to rapidly predict the spectral regrowth
caused by the power amplifier and associated circuitry.
This approach allows much more of the transmitter to
be simulated than with envelope-transient methods.

I.  INTRODUCTION

The increasing demand for low-cost mobile communica-
tion systems has greatly expanded the need for simulation
algorithms that are both efficient and accurate when
applied to RF communication circuits. These circuits are a
special challenge to simulate because they process signals
that consist of a high frequency carrier and a low fre-
quency modulation. Typically the carrier frequency ranges
from 1-5 GHz and the modulation from 10 kHz to 1 MHz.

Often the actual modulated carrier signals are modeled for
the purposes of simulation by simpler quasiperiodic sig-
nals, where a quasiperiodic signal is periodic carrier mod-
ulated with one or more periodic signals. Quasiperiodic
signals result when a nonlinear circuit is driven with two
or more periodic signals at unrelated frequencies. Cur-
rently, harmonic balance is the most commonly used
method for computing the quasiperiodic response of a cir-
cuit [4,5], however it suffers from accuracy and efficiency
problems when signals contain abrupt transitions. Unfor-
tunately, this is the case with most communication cir-
cuits. For example, mixers are always driven with a square

wave LO with rapid transitions because it results in higher
conversion gain and better noise performance. In addition,
circuits such as sample/holds and switched-capacitor fil-
ters are driven with a binary-valued clock signal. The
mixed-frequency/time method (MFT) is an promising
alternative to harmonic balance because it is capable of
both accurately and efficiently simulating circuits where
one of the periodic components of a quasiperiodic signal
exhibits abrupt transitions.

II.  THE MIXED FREQUENCY-TIME METHOD

The goal of the MFT algorithm [3,4] is to find a quasiperi-
odic steady state solution to the equations that govern the
operation of the circuit. Quasiperiodic steady state means
that the signals in the circuit can be represented using the
harmonics of a finite number of fundamental frequencies,
for example, 

, (1)

where, for simplicity, we limit the number of fundamental
frequencies to two, f0 and f1. Consider sampling the signal
v(t) at one of the fundamental frequencies, f0, which is
referred to as the clock. The sampled signal is related to
the continuous signal by , where T0 = 1/f0.

The MFT method works by computing the discrete
sequence  instead of the continuous waveform v. First we
define the state transition function, φ(v0, t0, t1), to be the
solution of the circuit equations at t1 given that it starts
from the initial condition v0 at t0. If we require that every

 is related to the subsequent sample point  by
, (2)

then all the  will satisfy the circuit equations. 

The transition function in (2) can be computed by standard
circuit transient analysis and serves to translate between
the continuous signal and the discrete representation. The
key to the MFT method is to require that the samples 
represent a quasiperiodic signal. This requirement is easily
enforced because, as shown in Figure 1, sampling a 2-fun-
damental quasiperiodic signal at one of the fundamental
frequencies results in a sampled waveform being 1-funda-
mental quasiperiodic, or simply periodic. In other words,
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the sampled waveform can be written as a Fourier series
with the clock tone removed, 

. (3)

Alternatively, one can write

, (4)

which states that  is the inverse Fourier transform of .
Consider the nth sample interval and let  be the
s o lu t i on  a t  t he  s ta r t  o f  the  i n t erva l  and

 be the solution at the end. Then, (2)
uses the circuit equations to relate the solution at both ends
of the interval,

. (5)

Define Φ as the function that maps the sequence x to the
sequence y by repeated application of (5),

y = Φ(x). (6)

Let X = Fx and Y = Fy (X and Y are the Fourier transforms
of x and y). Then, from (3) and since ,

, (7)

or
, (8)

where  is a diagonal delay matrix with 
being the kth diagonal element, which is written in the time
domain as

, (9)

Together, (6) and (9) make up the MFT method and can be
combined into

, or (10)

. (11)

Equation (11)is a implicit nonlinear equation that can be
solved for .

In practice, the signals in the circuits are band-limited, and
so only a finite number of harmonics is needed. Thus the
envelope shown in Figure 1 can be completely specified by
only a few of the sample points . With only K harmon-
ics needed, (2) is evaluated over 2K+1 distinct intervals. In
particular, if the circuit is driven with one large high fre-

quency signal at f0, which is referred to as the clock, and
one moderately sized sinusoid at f1, then the number of
harmonics needed, K, is small and the method is efficient.
The total simulation time is proportional to the number of
harmonics needed to represent the sampled waveform and
is independent of the period of the low-frequency beat
tone or the harmonics needed to represent the clock signal.

Equation 11 serves to relate the starting and ending points
of the solution of the circuit equations over each interval.
Shooting methods are the most common method for solv-
ing such boundary-value problems. They use transient
analysis to solve the circuit equations over an interval,
which brings two important benefits. First, transient analy-
sis has a natural ability to efficiently handle abruptly dis-
continuous signals because the timestep shrinks to follow
rapid transitions. Second, it easily handles the strongly
nonlinear behavior of the circuit as it responds to the large
clock signal.

III.  I MPROVEMENTS TO THE MFT METHOD

Several improvements to the MFT method have been
developed recently, which make it able to handle large
nonlinear circuits accurately and reliably [1]. The first
improvement involves the selection of the intervals com-
puted by the MFT algorithm. These intervals need to be
equally spaced over the period of the lowest beat tone. In
the original version of the algorithm, the intervals were
equally spaced in a statistical sense and a special almost-
periodic Fourier transform or APFT was used. Use of the
APFT overcame two difficult issues: the sample rate and
the beat frequency being noncommensurate, and the sam-
ple envelope occasionally being quasiperiodic. The some-
what random placement of the intervals generated a level
of error that was quite noticeable in the final results. In the
latest version, these issues are instead overcome by using a
multidimensional Fourier transform. The resulting inter-
vals are precisely evenly spaced and the error associated
with the APFT is eliminated.

The second improvement is the application of Krylov sub-
space methods. The MFT equation (11) is solved using
Newton’s method, which is an iterative procedure that
generates a series of linear equations. The equations
involve the Jacobian of the state transition function, which
is a dense N×N matrix, where N is the number of circuit
equations. In the past, these equations were solved using
Gaussian elimination; the time required is proportional to
N3, which results in this method becoming prohibitively
expensive when applied to large circuits. In the latest
implementation of the MFT algorithm, Krylov subspace
methods replace Gaussian elimination, and the time
required to solve the equations becomes proportional to N
rather than N3. As a result, MFT is now able to handle
much larger circuits than before.

Fig. 1.  The sample envelope is the waveform that results
from sampling a signal at a rate equal to that of the clock.
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In addition to the efficiency and accuracy advantages
already described, the new MFT method is very suitable
for parallel computation since the transient integrations of
the 2K+1 intervals can be done independently, as can the
initial preconditioning of the linear equations that is
required by the Krylov subspace methods. Another advan-
tage of the new MFT method is that it has an efficient out-
of-core implementation since its data access pattern is very
local and sequential.

IV.  SIMULATION  OF COMMUNICATION CIRCUITS

This section shows two applications of the new MFT
method. As common characteristics, each circuit pos-
sesses a large binary clock or LO as well as a high clock to
signal frequency ratio.

The first example is a high-performance image rejection
receiver. It consists of a low-noise amplifier, a splitting
network, two double-balanced mixers, and two broad-
band Hilbert transform output filters combined with a
summing network that is used to suppress the undesired
side-band. A limiter in the LO path is used for controlling
the amplitude of the LO. Since the LO is a large square
wave, it is difficult to simulate accurately with harmonic
balance. It is a rather large RF circuit that contains 167
bipolar transistors and uses 378 nodes. This circuit gener-
ated 987 equations in the simulator.

To determine the intermodulation distortion characteris-
tics, the circuit was driven by a 780MHz LO and two
50mV closely p laced RF inputs, at 840MHz and
840MHz+10KHz, respectively. Three harmonics were
used to model each of the RF signals.   200 time points
were used in each transient clock-cycle integration, con-
sidered to be conservative in terms of accuracy for this cir-
cuit. As a consequence, 987×(2×3+1)2×200 = 9,672,600,
or around ten million unknowns were generated. It took 55
CPU minutes to finish on a Sun UltraSparc10 workstation
with 128 MB of physical memory and a 300MHz CPU
clock. Figure 2 shows 3rd and 5th order distortion products.

To understand the efficiency of the MFT method, consider
that traditional transient analysis would need at least
80,000 cycles of the LO to compute the distortion, a simu-
lation time of over two days.

The second example is a low-pass switched-capacitor filter
of 4kHz bandwidth and having 238 nodes, resulting in 337
equations. To analyze this circuit, the MFT analysis was

performed with an 8-phase 100kHz clock and a 1V sinuso-
idal input at 100Hz. The 1000 to 1 clock to signal ratio
makes this circuit difficult for traditional circuit simulators
to analyze. In the MFT method, five harmonics were used
to model the input signal. The eight-phase clock resulted
in the need to use about 1250 timepoints in each transient
integration. This brings the total number of variables
solved by the analysis to 337×(2×5+1)×1250= 4,633,750,
near six million. The simulation took a little less than 30
minutes CPU time to finish, on a Sun UltraSparc1 work-
station with 128 MB memory and a 167MHz CPU clock.
Figure 3 shows the output spectrum of the filter.

V.  PREDICTING SPECTRAL REGROWTH OF A TRANSMITTER

A typical digital transmitter architecture is shown in  Fig-

ure 4. The low-pass filters can eliminate out-of-band sig-
nal components from the input baseband signal, but these
components may re-appear as a result of intermodulation
distortion generated within the transmitter, for example in
the downstream power amplifier. This tendency to regain
undesirable signal components is called “spectral
regrowth.” Adjacent Channel Power Ratio (ACPR) is a
popular measure of spectral regrowth in digital transmit-
ters and is often a design specification. To get the fre-
quency resolution required for accurate estimation of
ACPR in Code Division Multiple Access (CDMA) sys-
tems, the simulation must often process a random
sequence of between 500 to 10k input symbols. Even with
envelope techniques [6], direct transistor-level simulation
requires a taxing amount of resources except for simple
circuits. However, the MFT method enables fast indirect
ACPR estimation.

The MFT algorithm is first used to extract a behavioral
baseband-equivalent model of the transmitter. In transmit-

Fig. 2.  Intermodulation distortion of a receiver.
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Fig. 3.  Harmonic distortion of a switched-capacitor filter.

Fig. 4.  A digital direct conversion transmitter.
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ter circuits the input baseband signal is usually well within
the transmitter’s bandwidth, so a memoryless model often
suffices. Because the behavioral model abstracts away the
carrier and unnecessary circuit details, the following
ACPR calculation step is fast regardless of circuit size or
complexity.

The most familiar spectral regrowth mechanism is inter-
modulation distortion of amplitude modulation (AM) sig-
nal components entering the power amplifier. Modulation
schemes that carrier information only on the carrier phase
or frequency try to minimize spectral regrowth by elimi-
nating this AM component. Even so, the digital baseband
filters can convert discontinuous phase changes into
amplitude transients in the composite RF signal. Models
based on AM/AM and AM/PM conversion [2] capture
most such power amplifier related distortion mechanisms.
However, imperfections in the I/Q modulators can convert
input phase variations into output amplitude and phase
variations that also contribute to the distortion. For this
reason we also include PM/AM and PM/PM conversion
effects in our model. 

In extracting the behavioral model using the MFT algo-
rithm, the inputs are best written in polar coordinates, i.e.,
magnitude ρ and phase φ. The mapping f(ρ,φ) from input
to output is periodic in φ and so can be expressed as a Fou-
rier series, 

, (12)

where the magnitude-dependent Fourier coefficients are 

. (13)

To extract the Fourier coefficients, the I  and Q inputs of
the transmitter are driven with sinusoids in quadrature, at a
frequency within the transmitter’s bandwidth. For these
circular input trajectories, φ = ω0t, and the Fourier coeffi-
cients are given by

. (14)

Thus for a given input magnitude, the Fourier coefficients
are obtained directly from the output spectrum calculated
by the MFT. For example if the input circle is large enough
to alternately saturate the modulators, the –3 harmonic of
the complex baseband tone dominates the distortion. Let
the carrier frequency be ωc. The output spectrum has lines
at ωc+ω0 and ωc – 3ω0. The MFT computes the real and
imaginary parts of the Fourier coefficients. The simulation
is repeated for a range of input magnitudes to capture the
magnitude dependence of the Fourier coefficients. At each
input magnitude, the fundamental and its relevant harmon-

ics are recorded for interpolation. The model implementa-
tion reads the recorded data then processes any amount of
input baseband data according to (12). 

Figure 5 shows a simulated ACPR measurement. The cir-
cuit included the up-conversion image-reject mixer and the
power amplifier and consists of 46 transistors generating
328 equations in the circuit simulator. A 7th order model
took 2.5 hours to extract and simulated 30ms of CDMA
data (40k chips @ 1.25Mchips/sec) in less than 4 minuess
using a dataflow simulator and a Sun Ultra 1.

VI.  CONCLUSION

Improvements to the MFT method make it possible to effi-
ciently compute the intermodulation distortion of common
communication circuits. There is no reasonable alternative
on those circuits driven by a large clock, such as mixers,
switched-capacitor filters, sample/holds, etc. In addition, a
macromodel is presented that is used for predicting ACPR
of transmitters. This macromodel is efficiently extracted
using the MFT method and allows ACPR to be predicted
for much more of the transmitter than is possible with
other available methods.
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Fig. 5.  Output of the model.
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