
Extensions to Verilog-A to Support Compact Device Modeling 

Laurent Lemaitre, Geoffrey Coram†, Colin McAndrew, Ken Kundert‡ 
Motorola, Inc., Geneva, Switzerland, 

†Analog Devices, Inc., Wilmington MA, ‡Cadence Design Systems, Inc., San Jose, CA 
laurent.lemaitre@motorola.com, , , geoffrey.coram@analog.com colin.mcandrew@motorola.com kundert@cadence.com 

 
The main goal of this paper is to synthesize many of the 

proposals made so far in standardizing compact modeling 
using Verilog-A, and to build a requirements list of 
extensions that enables development of ready-to-implement 
compact models in Verilog-A. 

Abstract 
This paper discusses extensions to Verilog-A that 

address compact modeling needs. It reviews compact 
modeling and analog circuit simulation, and then presents a 
simple Verilog-A compact model for a capacitor. Based on 
this example, extensions are presented that make Verilog-A 
better suited to compact modeling. A tentative 
implementation of each extension is proposed and described. 
The paper concludes with a summary of the extensions, 
implemented in a revised capacitor model. 

The extensions presented here result from discussions 
that occurred within a subcommittee of the Verilog-A 
language definition committee under the auspices of 
Accellera [6], a consortium that defines the Verilog-A 
standard. Tentative implementations of some extensions were 
proposed in [4]. However, not all of the proposals fitted well 
with the overall features of Verilog-A. 1. Introduction In the next two sections we will briefly discuss the way 
that compact models are implemented in simulators. We will 
present some mechanisms involved during the DC analysis of 
an electrical circuit. These are prerequisites to better 
understand the need of certain extensions that are described 
below. 

Models for semiconductor devices and circuits range 
from the microscopic (so-called TCAD models based on first-
principles, fundamental device physics) to the macroscopic 
(behavioral models for complete integrated circuits). For the 
purpose of analog circuit simulation the former are too 
computationally complex and the latter are not sufficiently 
accurate. Physically based analytic models, termed compact 
models, that balance computational complexity and accuracy, 
like the BSIM3 model [1], are required for circuit simulation. 

2. How Simulators Implement Compact Models 
The implementation of a compact model in a simulator 

conceptually requires handling of the following components: 
  A set of model parameters Compact modeling involves four phases: 

  Derive physics-based constitutive equations   A set of instance parameters 
  Encode these equations in a computer language   Model initialization 
  Implement the code in a circuit simulator   Instance initialization 
  Validate the compact device model implementation   Evaluation (of branch constituent relations) 

In most compact model development there is little 
synergy between the approaches chosen for each phase of the 
process. Consequently, improvements in models and large-
scale distribution of models happen slowly. Bug fixes in the 
implementation of a compact model in one simulator can take 
a long time to propagate to other simulators. Improvements in 
the physics of compact models to account for new physical 
effects in advanced manufacturing processes are even slower 
in reaching the broad electronic design audience. 

  Post-processing 
Model parameters are typically physical or empirical 

parameters that are independent of a particular instance of a 
device. Examples include the gate oxide thicknessT  of a 
MOSFET, the saturation current per unit area  of a 
junction, and the effective width variation  of a resistor. 
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Instance parameters are those that depend on a particular 

instance of a device, and typically define layout attributes of 
a device. Examples include MOSFET gate width  and gate 
length . Some models allow “model” parameters to be 
specified for an instance (e.g. temperature coefficients for 
resistors), and statistical parameter variations for mismatch 
also need to be defined per instance. 

w
lRecently, proposals have been made to use a new model 

development methodology that increases the synergy between 
the phases listed above [2],[3],[4]. A common theme of the 
proposals is the use of Verilog-A as the standard language for 
modeling. This choice increases the degree of standardization 
of compact models, to the extent that the Verilog-A standard 
itself is implemented consistently. 

Model initialization is a block of code that takes care of 
parameter defaulting, parameter range checking, and 
parameter clamping and temperature variation. This code pre-
computes variables that do not depend on instance parameters 
or controlling electrical bias. 

At present, the Verilog-A syntax [5],[6] lacks constructs 
that are necessary to fully describe compact models and make 
them ready for automatic implementation into electrical 
simulators. 

Other variables can depend on instance parameters, but 
not controlling electrical bias, and these are calculated in the 
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instance initialization block, e.g. the transconductance 
parameter ( lwCOX0 )µβ =  of a MOSFET. 

Model evaluation is a block of code that typically 
calculates the values of currents, charges, and noise as a 
function of branch voltages, i.e. it implements the physical 
equations of a compact model. Since a simulator’s solver 
routine calls the model evaluation code repeatedly, it is 
important to keep the evaluation block as simple as possible. 
Note that not all parts of the model evaluation block are 
required for all analyses in a simulator; charges and noise are 
not required for DC analyses, for example. 

The post-processing block of code computes electrical 
quantities that are not required for simulator analyses. 
Typically this is operating-point data that are targeted for 
display, to provide useful information to designers. Examples 
are conductances, capacitance coefficients, unity gain 
(transition) frequency, and power dissipation. (Note that 
conductances and capacitance coefficients may be computed 
for use in Newton’s method, and so the post-processing may 
just manipulate this information, for example summing 
capacitance coefficients at a node, for convenient display of 
useful information.) 

3. Quick Review of Analog Circuit Simulation 

This section summarizes how simulators handle the 
routines that make up a compact model. 

Assume that the pseudo-code shown below refers to a 
circuit of four resistors and a voltage source. 
.model myR resistor 
+ rsh=1.0 tc1=0.001 tc2=-1.3e-4 
r1 (1 2) model=myR w=2.0 l=1.0 
r2 (2 3) model=myR w=3.0 l=1.0 
r3 (3 0) model=myR w=1.0 l=2.0 
r4 (3 0) model=myR w=1.0 l=2.0 
v1 (1 0) dc=1.0 
dc device=v1 dc=(1 3 4 5.5 6) 

The last statement asks the simulator to run a DC analysis, 
comprising five DC simulation steps, where the voltage 
source value is changed to each value in the list. 

Before starting any simulation the simulator initializes 
the model variables of each model declared in the netlist. 
Then it initializes the instance variables of each instance in 
the netlist by evaluating the instance initialization code. For 
this example, the simulator evaluates the resistor model 
initialization code once, for the model declaration referred to 
as myR, and for example computes the sheet resistance at the 
current simulation temperature. The simulator then evaluates 
the resistor instance initialization code four times, once for 
each resistor instance, to compute the resistance from the 
instance geometry and the model’s sheet resistance. 

After the initialization phase the simulator runs its first 
simulation step. At this point the topology of the circuit is 
frozen. The simulator engine solves for a solution to the 
given topology of the circuit. It executes the resistor evaluator 
as many times as necessary until convergence is reached. 
Although most simulators would solve a simple linear circuit 

in one iteration, assume that convergence is reached after 4 
Newton iterations for the first two bias points and 6 Newton 
iterations for the remaining 3 bias points. The resistor 
evaluation is called 26 times for each resistor instance, or 104 
times overall. After convergence is reached for each bias, the 
post-processing routine is called for each resistor (if printing 
of operating point information is requested). 

In summary, the DC analysis involves: 
  1 call to the resistor model initialization 
  4 calls to the resistor instance initialization 
  104 calls to the resistor evaluation 
  20 (possible) calls to the resistor post-processing 

This highlights the need to carefully design the routines 
that make up a compact model. Poor partitioning of compact 
model code leads to slow and inefficient implementation of a 
model. The current version of Verilog-A does not give a 
model author control over the code partitioning. However, 
analysis of the dependency tree of the model code allows 
automated partitioning. The proposed extensions to Verilog-
A therefore do not include block partition specifications. 

The next section gives an example of a compact model 
implemented in Verilog-A. It is a simple model for a 
capacitor. We will use this example throughout the paper to 
point out how extensions to the language could improve 
support of compact modeling. 

4. Simple Compact Model in Verilog-A 

Fig. 1 gives a Verilog-A implementation of a simple 
capacitor compact model (including deliberate problems). 

At the top, a small drawing represents the equivalent 
network of the model. The compact model includes parasitic 
resistance (calculated as the distributed resistance of a top 
poly plate), and allows for first and second order voltage 
coefficients of capacitance. 

All begin-end blocks of code are assigned a name that 
refers to the desired functionality of the block. These are the 
pieces of code that will make up the initialization, the 
evaluation, and the post-processing routines of the capacitor 
model, and make the code partitioning easily identifiable. 

The model described in Fig. 1 has some limitations, and 
is not completely consistent with how compact models are 
normally defined for, and work in, a simulator. So 
modifications of, and additions to, Verilog-A are required to 
allow complete description of a compact model. 

5. Proposed Extensions to Verilog-A 

This section describes specific extensions to Verilog-A 
to make it better suited to definition of compact models. This 
includes aspects that deal with concepts central to compact 
models that are not implementable in Verilog-A, with aids to 
documentation, and with tighter linking of models and 
simulator algorithms. 

5.1 Units 
Units are a valuable, sometimes mandatory, piece of 

information for parameters and variables. We propose to 



allow the specification of units for parameters and variables 
by use of a quoted string in the declaration statement. The 
units should follow the recommendations of “International 
System of Units” [7]. Besides making sure parameters are 
specified in the correct units and displayed variables are 
interpreted properly, the units field can also be used to 
automatically generate model documentation. 

The unit is specified as a string, immediately following 
the default value: 
parameter real w=1.0u "m"; 

This declaration states that parameter  is defined in meters 
and its default value is 1.0 micrometer. 

w

5.2 Descriptions 
Descriptions of parameters, terminals, and variables are 

useful for understanding what they are (names are not always 
obvious), as for example printed in a DC operating point 
analysis, and also for automatically generating model 
documentation. However, at present Verilog-A does not 
support a mechanism for defining descriptions of these 
quantities. 

We propose adding a double-dash construct that 
indicates that the following entry (a string), which should be 
the last entry in a specification, be allowed for terminals and 
parameters, modules, and variables. It is expected that all 
external terminals and all parameters should have 
descriptions, and that variables that are printed as part of DC 
operating point information should also have descriptions. 

For example: 
parameter real w=1.0u "m" –- "width"; 

gives a description of the parameter . w
Note that it is not possible just to define the last string 

field in a declaration to be the description. The range 
specification for parameters is optional, so if this was not 
specified and there was one string field, then it would be 
ambiguous as to whether it was a unit or a description. 

Good modeling practice would be that units and 
descriptions are explicitly defined for all parameters. 

5.3 String Variables 
As the previous examples have show, Verilog-A should 

be extended to include string data types. Specifically, for 
some parameters, like a device type (p or n) it is useful and 
more obvious to have them be of type string. 

It is proposed to add a data type string to Verilog-A, and 
to be able to perform string comparison operations. 

5.4 Detecting if a Parameter is Specified 
Sometimes it is useful in a model to determine if a 

parameter is specified (in a model card or on an instance 
line). Specifically, if there are multiple ways of defining how 
a certain part of a model is to be calculated, and the default 
parameters are not, or are not able to be, defined in such a 
way that it can be unambiguously determined that one 
definition option is not to be used (for example by having a 
default of –1.0 or 9.99e99, which is inelegant), then being 

able to detect if a parameter is specified can direct how 
calculations of one aspect of a model are to be handled. 

For example, in the MOSCAP varactor model [8] the 
substrate sheet resistance can be specified either directly, or 
via the substrate junction depth and resistivity. We propose to 
introduce a function $param_given that allows detection 
of whether a parameter is specified. 

For the example defined in the previous paragraph 
if ($param_given(rsub)&&$param_given(xj)) 
    rs=(rsub/xj)*(l/w)/8 
else 
    rs=rshsub*(l/w)/8 

5.5 Model and Instance Parameters 
One big difference between the existing way Verilog-A 

models are defined and handled in simulators and how 
compact models are treated is that for compact models 
parameters are sequestered into model parameters (defined on 
a .model card) and instance parameters (defined on a device 
instance). 

We propose to allow the keywords model and 
instance to be used before a parameter declaration, to 
specify the type of the parameter: 
instance parameter real w  =1.0u "m"; 
model    parameter real rsh=1    "Ohm/sq"; 

Details of model and instance parameter specifications are 
still being clarified. Note that at present Verilog-A 
parameters are instance parameters. 

5.6 Parameter Aliases 
It is sometimes convenient to be able to have aliases 

defined for parameters. There are two main situations where 
this is useful. 

First, if there are multiple common names for one 
quantity it allows acceptance of them all. For example, in 
various simulators and models the local temperature rise with 
respect to ambient is variously referred to as dtemp, trise, 
and dta.  

Second, sometimes the numeral zero (0) and the letters o 
or O are confused. So having aliases can avoid frustration. 
model parameter real  vto=0.4; 
      parameter alias vt0=vto; 
The alias specification precludes both vto and vt0 being 
specified on a model card, which is not preventable if both 
are declared as parameters. Model equations use vto only. 

5.7 Interaction with Simulator Variables/Algorithms 
Although conceptually a model should be independent of 

a particular simulator, specific numerical algorithms used in 
models, such as homotopy, require specific action by models. 
Also, there are global simulator parameters such as gmin, 
shrink, and imax, which models need to know. 

Therefore interaction with simulator variables and 
algorithms can be necessary. For access to variables two 
forms are proposed. 
gmin=$simparam("gmin",1); 



would return an error if the simulator does not know the 
parameter gmin, else would return the value of gmin. And 
gmin=$simparam("gmin",0,1e-12); 
would return the value of gmin if it were known, else would 
return the third argument, here 10-12. This third argument 
could be a default, or a value (like –1) that allowed 
unambiguous detection that the parameter was not known to 
the simulator, so conditional action could be taken. 

Similarly simulator specific action is proposed to be 
specified by `ifdef conditionals, for which known vendor 
and simulator macros are defined. Details are still being 
discussed, but as these do not need to be evaluated at run-
time they do not need to be defined as additional functions. 

5.8 Access to Derivatives 
Conductances and capacitance coefficients are useful 

quantities to report to designers, and are conventionally 
provided as part of an operating point analysis for compact 
models. When Newton's method is used during simulation 
these quantities are often available, but this is not guaranteed 
(for example when Jacobian bypass is used). Therefore we 
propose addition of a function $ddx() to explicitly allow 
access to derivative information, typically for operating point 
analysis. The example in Fig. 1 is simple enough to allow 
manual definition of the effective capacitance, although there 
is a deliberate error in the definition of Ceff, however for a 
complex model it can be tedious and error prone to define 
conductances and capacitance coefficients manually, and 
even minor updates to a model can require significant effort 
to recalculate and code derivatives. Also, a key attribute of 
Verilog-A is that it does not require derivatives and expects 
them to be calculated when needed. 

Typical quantities calculated for a MOSFET would 
include: 
gm = $ddx(Ids,V(g,s)); // transconductance 
cgs=-$ddx(Qg,V(s,g))-$ddx(Qg,V(s,d)) 
    -$ddx(Qg,(Vs,b)); // gate-source cap 

5.9 Optional Terminals 
Some models include optional terminals. For example 

BJTs have historically been able to be defined with 3 or 4 
terminals, depending on whether or not there is a substrate 
terminal. Also, models that include self-heating may want to 
have a self-heating terminal available for thermal coupling to 
adjacent devices, or may want the self-heating terminal 
hidden if there is no interaction with adjacent devices. 

These two cases require different actions. For the first, 
calculations associated with elements connected to the 
substrate terminal are bypassed, and the topology of the 
equivalent network changes. For the second, the self-heating 
node is still required for simulation, and the equivalent 
network topology is not changed, and the self-heating 
terminal is effectively open circuited. Having multiple 
optional terminals raises other issues. Evaluation of optional 
terminals is on going. 

6. Example 

Fig. 2 shows the simple capacitor model with many of 
the extensions described above. All terminals, parameters, 
and output quantities have descriptions, and the last 2 have 
units defined (the narrow column width makes it a bit 
cluttered to read). The parameters are declared as either 
instance or model parameters. Any variable (here Ceff and 
pwrR) declared at the top level, outside the analog block, is 
an output variable. 

Expecting that code partitioning is automatic, the named 
blocks used to sequester the code have been removed.  

A string variable for device type is included, and this 
allows polarity dependent calculations to be done more 
obviously, rather than relying on use of a real parameter as a 
flag. The handling of the integer number of contacts is also 
done in a cleaner manner. 

The calculation of the output display quantity Ceff now 
does not require manual (and error prone) calculation of a 
derivative, but is specified directly. 

7. Conclusion 

The goals of this paper are 
  to promote Verilog-A as a standard language for 

compact model development and definition 
  to highlight the need for extensions to Verilog-A to 

support the full functionality needed by compact models 
This paper has defined some extensions to Verilog-A that 
make it more suited to the description of compact models. 
These extensions are now being refined by a subcommittee 
and will be proposed to Accellera for incorporation in future 
definitions of the Verilog-A language. 
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// 
// simple capacitor model 
//  t    R    i   C   b 
//  o——/\/\/——o——| |——o 
// 
`define TNOM (`P_CELCIUS0+27.0) 
module    C (t, b); 
 inout       t, b; 
 electrical  t, b; 
 electrical  i; 
 branch     (t, i) R; 
 branch     (i, b) C; 
 parameter real w   =1u from (0.1u:+inf); 
 parameter real l   =1u from (0.1u:+inf); 
 parameter real nc  =1  from [1   :2   ]; 
 parameter real rsh =1  from (0   :+inf); 
 parameter real ca  =1f from (0   :+inf); 
 parameter real tcr =0; 
 parameter real vc1 =0; 
 parameter real vc2 =0; 
 parameter real type=0; // 0=n, 1=p 
 analog begin : module 
  real dT, rsh_t, c, r, Ir, Qc, Ceff, pwrR; 
  begin : initializeModel 
   dT    = $temperature-`TNOM; 
   rsh_t = rsh*(1.0+tcr*dT); 
  end 
  begin : initializeInstance 
   c   = w*l*ca*1e12; // unit conversion 
   if (nc>1.5) 
    r  = rsh_t*(w/l)/12; 
   else 
    r  = rsh_t*(w/l)/3; 
  end 
  begin : evaluateStatic 
   Ir  = V(R)/r; 
  end 
  begin : evaluateDynamic 
   if (type>0.5) // inelegant 
    Qc  = c*V(C)*(1-V(C)*(vc1/2-V(C)*vc2/3)); 
   else 
    Qc  = c*V(C)*(1+V(C)*(vc1/2+V(C)*vc2/3)); 
  end 
  begin : loadStatic 
   I(R) <+Ir; 
  end 
  begin : loadDynamic 
   I(C) <+ddt(Qc); 
  end 
  begin : postProcess 
   if (type>0.5) 
    Ceff = c*(1.0-V(C)*(vc1/2-V(C)/3));//error!
   else 
    Ceff = c*(1.0+V(C)*(vc1/2+V(C)/3));//error!
   pwrR = V(R)*Ir; 
  end 
 end // analog 
endmodule 
 
 
 
 

 
 

Fig. 1 Simple Capacitor Model 
// 
// simple capacitor model 
// with Verilog-A extensions 
//  t    R    i   C   b 
//  o——/\/\/——o——| |——o 
// 
`define TNOM (`P_CELCIUS0+27.0) 
module    C (t, b) –- "capacitor model"; 
 inout       t, b; 
 electrical  t     –- "top plate terminal"; 
 electrical  b     –- "bottom plate terminal"; 
 electrical  i     –- "internal node"; 
 branch     (t, i) R; 
 branch     (i, b) C; 
 instance parameter real w    =1u "m"  
       from (0.1u:+inf) –- "width"; 
 instance parameter real l    =1u "m"  
       from (0.1u:+inf) –- "length"; 
 instance parameter integer nc=1  ""  
       from [1   :2   ] –- "# contacts"; 
 model    parameter real "Ohm/sq" rsh  =1    
       from (0   :+inf) –- "sheet resistance"; 
 model    parameter real "F/um^2"  ca   =1f 
       from (0   :+inf) –- "cap per area"; 
 model    parameter real "/C"  tcr  =0   
                        -- "R temp coef1"; 
 model    parameter real "/V" vc1  =0   

-- "C voltage coef1"; 
 model    parameter real "/V"  vc2  =0   
                "C vo ge coef2";          -- lta
 model    parameter string type="n" ""  

-- "bulk type (n/p)"; 
 parameter alias rs = rsh; 
 real Ceff "F" –- "effective capacitance"; 
 real pwrR "W" –- "power dissipation"; 
 analog begin : module 
  real dT, rsh_t, c, r, Ir, Qc, ty; 
  dT    = $temperature-`TNOM; 
  rsh_t = rsh*(1.0+tcr*dT); 

if ($param_given(type) && type=="p")   
   ty =-1; 
  else 
   ty =+1; 
  c   = w*l*ca*1e12; // unit conversion 
  r   = rsh_t*(w/l)/(3*nc*nc); // integer nc 
  Ir  = V(R)/r; 
  Qc  = c*V(C)*(1+V(C)*(ty*vc1/2+V(C)*vc2/3)); 
  I(R)<+Ir; 
  I(C)<+ddt(Qc); 
  Ceff= $ddx(Qc,V(C)); // no manual error 
  pwrR= V(R)*Ir; 
 end // analog 
endmodule 
Fig. 2 Capacitor Model with Extensions 


