
Extensions to Verilog-A to Support Compact Device Modeling

Laurent Lemaitre, Geoffrey Coram†, Colin McAndrew, Ken Kundert‡
Motorola, Inc., Geneva, Switzerland,

†Analog Devices, Inc., Wilmington MA, ‡Cadence Design Systems, Inc., San Jose, CA
laurent.lemaitre@motorola.com, , , geoffrey.coram@analog.com colin.mcandrew@motorola.com kundert@cadence.com

The main goal of this paper is to synthesize many of the

proposals made so far in standardizing compact modeling
using Verilog-A, and to build a requirements list of
extensions that enables development of ready-to-implement
compact models in Verilog-A.

Abstract
This paper discusses extensions to Verilog-A that

address compact modeling needs. It reviews compact
modeling and analog circuit simulation, and then presents a
simple Verilog-A compact model for a capacitor. Based on
this example, extensions are presented that make Verilog-A
better suited to compact modeling. A tentative
implementation of each extension is proposed and described.
The paper concludes with a summary of the extensions,
implemented in a revised capacitor model.

The extensions presented here result from discussions
that occurred within a subcommittee of the Verilog-A
language definition committee under the auspices of
Accellera [6], a consortium that defines the Verilog-A
standard. Tentative implementations of some extensions were
proposed in [4]. However, not all of the proposals fitted well
with the overall features of Verilog-A. 1. Introduction In the next two sections we will briefly discuss the way
that compact models are implemented in simulators. We will
present some mechanisms involved during the DC analysis of
an electrical circuit. These are prerequisites to better
understand the need of certain extensions that are described
below.

Models for semiconductor devices and circuits range
from the microscopic (so-called TCAD models based on first-
principles, fundamental device physics) to the macroscopic
(behavioral models for complete integrated circuits). For the
purpose of analog circuit simulation the former are too
computationally complex and the latter are not sufficiently
accurate. Physically based analytic models, termed compact
models, that balance computational complexity and accuracy,
like the BSIM3 model [1], are required for circuit simulation.

2. How Simulators Implement Compact Models
The implementation of a compact model in a simulator

conceptually requires handling of the following components:
 A set of model parameters Compact modeling involves four phases:

 Derive physics-based constitutive equations A set of instance parameters
 Encode these equations in a computer language Model initialization
 Implement the code in a circuit simulator Instance initialization
 Validate the compact device model implementation Evaluation (of branch constituent relations)

In most compact model development there is little
synergy between the approaches chosen for each phase of the
process. Consequently, improvements in models and large-
scale distribution of models happen slowly. Bug fixes in the
implementation of a compact model in one simulator can take
a long time to propagate to other simulators. Improvements in
the physics of compact models to account for new physical
effects in advanced manufacturing processes are even slower
in reaching the broad electronic design audience.

 Post-processing
Model parameters are typically physical or empirical

parameters that are independent of a particular instance of a
device. Examples include the gate oxide thicknessT of a
MOSFET, the saturation current per unit area of a
junction, and the effective width variation of a resistor.

OX
SJ

W∆
Instance parameters are those that depend on a particular

instance of a device, and typically define layout attributes of
a device. Examples include MOSFET gate width and gate
length . Some models allow “model” parameters to be
specified for an instance (e.g. temperature coefficients for
resistors), and statistical parameter variations for mismatch
also need to be defined per instance.

w
lRecently, proposals have been made to use a new model

development methodology that increases the synergy between
the phases listed above [2],[3],[4]. A common theme of the
proposals is the use of Verilog-A as the standard language for
modeling. This choice increases the degree of standardization
of compact models, to the extent that the Verilog-A standard
itself is implemented consistently.

Model initialization is a block of code that takes care of
parameter defaulting, parameter range checking, and
parameter clamping and temperature variation. This code pre-
computes variables that do not depend on instance parameters
or controlling electrical bias.

At present, the Verilog-A syntax [5],[6] lacks constructs
that are necessary to fully describe compact models and make
them ready for automatic implementation into electrical
simulators.

Other variables can depend on instance parameters, but
not controlling electrical bias, and these are calculated in the

mailto:Colin.McAndrew@motorola.com
mailto:laurent.lemaitre@motorola.com
mailto:geoffrey.coram@analog.com
mailto:colin.mcandrew@motorola.com
mailto:kundert@cadence.com

instance initialization block, e.g. the transconductance
parameter (lwCOX0)µβ = of a MOSFET.

Model evaluation is a block of code that typically
calculates the values of currents, charges, and noise as a
function of branch voltages, i.e. it implements the physical
equations of a compact model. Since a simulator’s solver
routine calls the model evaluation code repeatedly, it is
important to keep the evaluation block as simple as possible.
Note that not all parts of the model evaluation block are
required for all analyses in a simulator; charges and noise are
not required for DC analyses, for example.

The post-processing block of code computes electrical
quantities that are not required for simulator analyses.
Typically this is operating-point data that are targeted for
display, to provide useful information to designers. Examples
are conductances, capacitance coefficients, unity gain
(transition) frequency, and power dissipation. (Note that
conductances and capacitance coefficients may be computed
for use in Newton’s method, and so the post-processing may
just manipulate this information, for example summing
capacitance coefficients at a node, for convenient display of
useful information.)

3. Quick Review of Analog Circuit Simulation

This section summarizes how simulators handle the
routines that make up a compact model.

Assume that the pseudo-code shown below refers to a
circuit of four resistors and a voltage source.
.model myR resistor
+ rsh=1.0 tc1=0.001 tc2=-1.3e-4
r1 (1 2) model=myR w=2.0 l=1.0
r2 (2 3) model=myR w=3.0 l=1.0
r3 (3 0) model=myR w=1.0 l=2.0
r4 (3 0) model=myR w=1.0 l=2.0
v1 (1 0) dc=1.0
dc device=v1 dc=(1 3 4 5.5 6)

The last statement asks the simulator to run a DC analysis,
comprising five DC simulation steps, where the voltage
source value is changed to each value in the list.

Before starting any simulation the simulator initializes
the model variables of each model declared in the netlist.
Then it initializes the instance variables of each instance in
the netlist by evaluating the instance initialization code. For
this example, the simulator evaluates the resistor model
initialization code once, for the model declaration referred to
as myR, and for example computes the sheet resistance at the
current simulation temperature. The simulator then evaluates
the resistor instance initialization code four times, once for
each resistor instance, to compute the resistance from the
instance geometry and the model’s sheet resistance.

After the initialization phase the simulator runs its first
simulation step. At this point the topology of the circuit is
frozen. The simulator engine solves for a solution to the
given topology of the circuit. It executes the resistor evaluator
as many times as necessary until convergence is reached.
Although most simulators would solve a simple linear circuit

in one iteration, assume that convergence is reached after 4
Newton iterations for the first two bias points and 6 Newton
iterations for the remaining 3 bias points. The resistor
evaluation is called 26 times for each resistor instance, or 104
times overall. After convergence is reached for each bias, the
post-processing routine is called for each resistor (if printing
of operating point information is requested).

In summary, the DC analysis involves:
 1 call to the resistor model initialization
 4 calls to the resistor instance initialization
 104 calls to the resistor evaluation
 20 (possible) calls to the resistor post-processing

This highlights the need to carefully design the routines
that make up a compact model. Poor partitioning of compact
model code leads to slow and inefficient implementation of a
model. The current version of Verilog-A does not give a
model author control over the code partitioning. However,
analysis of the dependency tree of the model code allows
automated partitioning. The proposed extensions to Verilog-
A therefore do not include block partition specifications.

The next section gives an example of a compact model
implemented in Verilog-A. It is a simple model for a
capacitor. We will use this example throughout the paper to
point out how extensions to the language could improve
support of compact modeling.

4. Simple Compact Model in Verilog-A

Fig. 1 gives a Verilog-A implementation of a simple
capacitor compact model (including deliberate problems).

At the top, a small drawing represents the equivalent
network of the model. The compact model includes parasitic
resistance (calculated as the distributed resistance of a top
poly plate), and allows for first and second order voltage
coefficients of capacitance.

All begin-end blocks of code are assigned a name that
refers to the desired functionality of the block. These are the
pieces of code that will make up the initialization, the
evaluation, and the post-processing routines of the capacitor
model, and make the code partitioning easily identifiable.

The model described in Fig. 1 has some limitations, and
is not completely consistent with how compact models are
normally defined for, and work in, a simulator. So
modifications of, and additions to, Verilog-A are required to
allow complete description of a compact model.

5. Proposed Extensions to Verilog-A

This section describes specific extensions to Verilog-A
to make it better suited to definition of compact models. This
includes aspects that deal with concepts central to compact
models that are not implementable in Verilog-A, with aids to
documentation, and with tighter linking of models and
simulator algorithms.

5.1 Units
Units are a valuable, sometimes mandatory, piece of

information for parameters and variables. We propose to

allow the specification of units for parameters and variables
by use of a quoted string in the declaration statement. The
units should follow the recommendations of “International
System of Units” [7]. Besides making sure parameters are
specified in the correct units and displayed variables are
interpreted properly, the units field can also be used to
automatically generate model documentation.

The unit is specified as a string, immediately following
the default value:
parameter real w=1.0u "m";

This declaration states that parameter is defined in meters
and its default value is 1.0 micrometer.

w

5.2 Descriptions
Descriptions of parameters, terminals, and variables are

useful for understanding what they are (names are not always
obvious), as for example printed in a DC operating point
analysis, and also for automatically generating model
documentation. However, at present Verilog-A does not
support a mechanism for defining descriptions of these
quantities.

We propose adding a double-dash construct that
indicates that the following entry (a string), which should be
the last entry in a specification, be allowed for terminals and
parameters, modules, and variables. It is expected that all
external terminals and all parameters should have
descriptions, and that variables that are printed as part of DC
operating point information should also have descriptions.

For example:
parameter real w=1.0u "m" –- "width";

gives a description of the parameter . w
Note that it is not possible just to define the last string

field in a declaration to be the description. The range
specification for parameters is optional, so if this was not
specified and there was one string field, then it would be
ambiguous as to whether it was a unit or a description.

Good modeling practice would be that units and
descriptions are explicitly defined for all parameters.

5.3 String Variables
As the previous examples have show, Verilog-A should

be extended to include string data types. Specifically, for
some parameters, like a device type (p or n) it is useful and
more obvious to have them be of type string.

It is proposed to add a data type string to Verilog-A, and
to be able to perform string comparison operations.

5.4 Detecting if a Parameter is Specified
Sometimes it is useful in a model to determine if a

parameter is specified (in a model card or on an instance
line). Specifically, if there are multiple ways of defining how
a certain part of a model is to be calculated, and the default
parameters are not, or are not able to be, defined in such a
way that it can be unambiguously determined that one
definition option is not to be used (for example by having a
default of –1.0 or 9.99e99, which is inelegant), then being

able to detect if a parameter is specified can direct how
calculations of one aspect of a model are to be handled.

For example, in the MOSCAP varactor model [8] the
substrate sheet resistance can be specified either directly, or
via the substrate junction depth and resistivity. We propose to
introduce a function $param_given that allows detection
of whether a parameter is specified.

For the example defined in the previous paragraph
if ($param_given(rsub)&&$param_given(xj))
 rs=(rsub/xj)*(l/w)/8
else
 rs=rshsub*(l/w)/8

5.5 Model and Instance Parameters
One big difference between the existing way Verilog-A

models are defined and handled in simulators and how
compact models are treated is that for compact models
parameters are sequestered into model parameters (defined on
a .model card) and instance parameters (defined on a device
instance).

We propose to allow the keywords model and
instance to be used before a parameter declaration, to
specify the type of the parameter:
instance parameter real w =1.0u "m";
model parameter real rsh=1 "Ohm/sq";

Details of model and instance parameter specifications are
still being clarified. Note that at present Verilog-A
parameters are instance parameters.

5.6 Parameter Aliases
It is sometimes convenient to be able to have aliases

defined for parameters. There are two main situations where
this is useful.

First, if there are multiple common names for one
quantity it allows acceptance of them all. For example, in
various simulators and models the local temperature rise with
respect to ambient is variously referred to as dtemp, trise,
and dta.

Second, sometimes the numeral zero (0) and the letters o
or O are confused. So having aliases can avoid frustration.
model parameter real vto=0.4;
 parameter alias vt0=vto;
The alias specification precludes both vto and vt0 being
specified on a model card, which is not preventable if both
are declared as parameters. Model equations use vto only.

5.7 Interaction with Simulator Variables/Algorithms
Although conceptually a model should be independent of

a particular simulator, specific numerical algorithms used in
models, such as homotopy, require specific action by models.
Also, there are global simulator parameters such as gmin,
shrink, and imax, which models need to know.

Therefore interaction with simulator variables and
algorithms can be necessary. For access to variables two
forms are proposed.
gmin=$simparam("gmin",1);

would return an error if the simulator does not know the
parameter gmin, else would return the value of gmin. And
gmin=$simparam("gmin",0,1e-12);
would return the value of gmin if it were known, else would
return the third argument, here 10-12. This third argument
could be a default, or a value (like –1) that allowed
unambiguous detection that the parameter was not known to
the simulator, so conditional action could be taken.

Similarly simulator specific action is proposed to be
specified by `ifdef conditionals, for which known vendor
and simulator macros are defined. Details are still being
discussed, but as these do not need to be evaluated at run-
time they do not need to be defined as additional functions.

5.8 Access to Derivatives
Conductances and capacitance coefficients are useful

quantities to report to designers, and are conventionally
provided as part of an operating point analysis for compact
models. When Newton's method is used during simulation
these quantities are often available, but this is not guaranteed
(for example when Jacobian bypass is used). Therefore we
propose addition of a function $ddx() to explicitly allow
access to derivative information, typically for operating point
analysis. The example in Fig. 1 is simple enough to allow
manual definition of the effective capacitance, although there
is a deliberate error in the definition of Ceff, however for a
complex model it can be tedious and error prone to define
conductances and capacitance coefficients manually, and
even minor updates to a model can require significant effort
to recalculate and code derivatives. Also, a key attribute of
Verilog-A is that it does not require derivatives and expects
them to be calculated when needed.

Typical quantities calculated for a MOSFET would
include:
gm = $ddx(Ids,V(g,s)); // transconductance
cgs=-$ddx(Qg,V(s,g))-$ddx(Qg,V(s,d))
 -$ddx(Qg,(Vs,b)); // gate-source cap

5.9 Optional Terminals
Some models include optional terminals. For example

BJTs have historically been able to be defined with 3 or 4
terminals, depending on whether or not there is a substrate
terminal. Also, models that include self-heating may want to
have a self-heating terminal available for thermal coupling to
adjacent devices, or may want the self-heating terminal
hidden if there is no interaction with adjacent devices.

These two cases require different actions. For the first,
calculations associated with elements connected to the
substrate terminal are bypassed, and the topology of the
equivalent network changes. For the second, the self-heating
node is still required for simulation, and the equivalent
network topology is not changed, and the self-heating
terminal is effectively open circuited. Having multiple
optional terminals raises other issues. Evaluation of optional
terminals is on going.

6. Example

Fig. 2 shows the simple capacitor model with many of
the extensions described above. All terminals, parameters,
and output quantities have descriptions, and the last 2 have
units defined (the narrow column width makes it a bit
cluttered to read). The parameters are declared as either
instance or model parameters. Any variable (here Ceff and
pwrR) declared at the top level, outside the analog block, is
an output variable.

Expecting that code partitioning is automatic, the named
blocks used to sequester the code have been removed.

A string variable for device type is included, and this
allows polarity dependent calculations to be done more
obviously, rather than relying on use of a real parameter as a
flag. The handling of the integer number of contacts is also
done in a cleaner manner.

The calculation of the output display quantity Ceff now
does not require manual (and error prone) calculation of a
derivative, but is specified directly.

7. Conclusion

The goals of this paper are
 to promote Verilog-A as a standard language for

compact model development and definition
 to highlight the need for extensions to Verilog-A to

support the full functionality needed by compact models
This paper has defined some extensions to Verilog-A that
make it more suited to the description of compact models.
These extensions are now being refined by a subcommittee
and will be proposed to Accellera for incorporation in future
definitions of the Verilog-A language.

References

[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

http://www-device.eecs.berkeley.edu/~bsim3/
L. Lemaitre, C. McAndrew, and S. Hamm, “ADMS –
Automated Device Model Synthesize,” Proc. IEEE
CICC, pp. 27-30, 2002.
M. Mierzwinski, P. O’Halloran, B. Troyanovsky and R.
Dutton, “Changing the Paradigm for Compact Model
Integration in Circuit Simulators Using Verilog-A,”
Proc. Nanotech, pp. 376–379, 2003.
L. Lemaitre, C. McAndrew, and W. Grabinski,
“Standardization of Compact Device modeling in High
Level Description Language,” Proc. Nanotech, pp. 372-
375, 2003.
Open Verilog International, “Verilog-AMS, Language
Reference Manual,” Version 1.9, Dec. 15, 1999.
http://www.accellera.org/
http://www.bipm.fr/enus/3_SI/base_units.html
J. Victory, C. C. McAndrew, and K. Gullapalli, “A
Time-Dependent, Surface Potential Based Compact
Model for MOS Capacitors,” IEEE EDL, vol. 22, no. 5,
pp. 245-247, May 2001.

http://www-device.eecs.berkeley.edu/%7ebsim3/
http://www.accellera.org/
http://www.bipm.fr/enus/3_SI/base_units.html

//
// simple capacitor model
// t R i C b
// o——/\/\/——o——| |——o
//
`define TNOM (`P_CELCIUS0+27.0)
module C (t, b);
 inout t, b;
 electrical t, b;
 electrical i;
 branch (t, i) R;
 branch (i, b) C;
 parameter real w =1u from (0.1u:+inf);
 parameter real l =1u from (0.1u:+inf);
 parameter real nc =1 from [1 :2];
 parameter real rsh =1 from (0 :+inf);
 parameter real ca =1f from (0 :+inf);
 parameter real tcr =0;
 parameter real vc1 =0;
 parameter real vc2 =0;
 parameter real type=0; // 0=n, 1=p
 analog begin : module
 real dT, rsh_t, c, r, Ir, Qc, Ceff, pwrR;
 begin : initializeModel
 dT = $temperature-`TNOM;
 rsh_t = rsh*(1.0+tcr*dT);
 end
 begin : initializeInstance
 c = w*l*ca*1e12; // unit conversion
 if (nc>1.5)
 r = rsh_t*(w/l)/12;
 else
 r = rsh_t*(w/l)/3;
 end
 begin : evaluateStatic
 Ir = V(R)/r;
 end
 begin : evaluateDynamic
 if (type>0.5) // inelegant
 Qc = c*V(C)*(1-V(C)*(vc1/2-V(C)*vc2/3));
 else
 Qc = c*V(C)*(1+V(C)*(vc1/2+V(C)*vc2/3));
 end
 begin : loadStatic
 I(R) <+Ir;
 end
 begin : loadDynamic
 I(C) <+ddt(Qc);
 end
 begin : postProcess
 if (type>0.5)
 Ceff = c*(1.0-V(C)*(vc1/2-V(C)/3));//error!
 else
 Ceff = c*(1.0+V(C)*(vc1/2+V(C)/3));//error!
 pwrR = V(R)*Ir;
 end
 end // analog
endmodule

Fig. 1 Simple Capacitor Model
//
// simple capacitor model
// with Verilog-A extensions
// t R i C b
// o——/\/\/——o——| |——o
//
`define TNOM (`P_CELCIUS0+27.0)
module C (t, b) –- "capacitor model";
 inout t, b;
 electrical t –- "top plate terminal";
 electrical b –- "bottom plate terminal";
 electrical i –- "internal node";
 branch (t, i) R;
 branch (i, b) C;
 instance parameter real w =1u "m"
 from (0.1u:+inf) –- "width";
 instance parameter real l =1u "m"
 from (0.1u:+inf) –- "length";
 instance parameter integer nc=1 ""
 from [1 :2] –- "# contacts";
 model parameter real "Ohm/sq" rsh =1
 from (0 :+inf) –- "sheet resistance";
 model parameter real "F/um^2" ca =1f
 from (0 :+inf) –- "cap per area";
 model parameter real "/C" tcr =0
 -- "R temp coef1";
 model parameter real "/V" vc1 =0

-- "C voltage coef1";
 model parameter real "/V" vc2 =0
 "C vo ge coef2"; -- lta
 model parameter string type="n" ""

-- "bulk type (n/p)";
 parameter alias rs = rsh;
 real Ceff "F" –- "effective capacitance";
 real pwrR "W" –- "power dissipation";
 analog begin : module
 real dT, rsh_t, c, r, Ir, Qc, ty;
 dT = $temperature-`TNOM;
 rsh_t = rsh*(1.0+tcr*dT);

if ($param_given(type) && type=="p")
 ty =-1;
 else
 ty =+1;
 c = w*l*ca*1e12; // unit conversion
 r = rsh_t*(w/l)/(3*nc*nc); // integer nc
 Ir = V(R)/r;
 Qc = c*V(C)*(1+V(C)*(ty*vc1/2+V(C)*vc2/3));
 I(R)<+Ir;
 I(C)<+ddt(Qc);
 Ceff= $ddx(Qc,V(C)); // no manual error
 pwrR= V(R)*Ir;
 end // analog
endmodule
Fig. 2 Capacitor Model with Extensions

